These 7 Disruptive Technologies Could Be Worth Trillions of Dollars

June 29, 2017

Scientists, technologists, engineers, and visionaries are building the future. Amazing things are in the pipeline. It’s a big deal. But you already knew all that. Such speculation is common. What’s less common? Scale.

How big is big?

“Silicon Valley, Silicon Alley, Silicon Dock, all of the Silicons around the world, they are dreaming the dream. They are innovating,” Catherine Wood said at Singularity University’s Exponential Finance in New York. “We are sizing the opportunity. That’s what we do.”

Catherine Wood at Exponential Finance.

Wood is founder and CEO of ARK Investment Management, a research and investment company focused on the growth potential of today’s disruptive technologies. Prior to ARK, she served as CIO of Global Thematic Strategies at AllianceBernstein for 12 years.

“We believe innovation is key to growth,” Wood said. “We are not focused on the past. We are focused on the future. We think there are tremendous opportunities in the public marketplace because this shift towards passive [investing] has created a lot of risk aversion and tremendous inefficiencies.”

In a new research report, released this week, ARK took a look at seven disruptive technologies, and put a number on just how tremendous they are. Here’s what they found.

(Check out ARK’s website and free report, “Big Ideas of 2017,” for more numbers, charts, and detail.)

1. Deep Learning Could Be Worth 35 Amazons

Deep learning is a subcategory of machine learning which is itself a subcategory of artificial intelligence. Deep learning is the source of much of the hype surrounding AI today. (You know you may be in a hype bubble when ads tout AI on Sunday golf commercial breaks.)

Behind the hype, however, big tech companies are pursuing deep learning to do very practical things. And whereas the internet, which unleashed trillions in market value, transformed several industries—news, entertainment, advertising, etc.—deep learning will work its way into even more, Wood said.

As deep learning advances, it should automate and improve technology, transportation, manufacturing, healthcare, finance, and more. And as is often the case with emerging technologies, it may form entirely new businesses we have yet to imagine.

“Bill Gates has said a breakthrough in machine learning would be worth 10 Microsofts. Microsoft is $550 to $600 billion,” Wood said. “We think deep learning is going to be twice that. We think [it] could approach $17 trillion in market cap—which would be 35 Amazons.”

2. Fleets of Autonomous Taxis to Overtake Automakers

Wood didn’t mince words about a future when cars drive themselves.

This is the biggest change that the automotive industry has ever faced,” she said.

Today’s automakers have a global market capitalization of a trillion dollars. Meanwhile, mobility-as-a-service companies as a whole (think ridesharing) are valued around $115 billion. If this number took into account expectations of a driverless future, it’d be higher.

The mobility-as-a-service market, which will slash the cost of “point-to-point” travel, could be worth more than today’s automakers combined, Wood said. Twice as much, in fact. As gross sales grow to something like $10 trillion in the early 2030s, her firm thinks some 20% of that will go to platform providers. It could be a $2 trillion opportunity.

Wood said a handful of companies will dominate the market, and Tesla is well positioned to be one of those companies. They are developing both the hardware, electric cars, and the software, self-driving algorithms. And although analysts tend to look at them as a just an automaker right now, that’s not all they’ll be down the road.

“We think if [Tesla] got even 5% of this global market for autonomous taxi networks, it should be worth another $100 billion today,” Wood said.

3. 3D Printing Goes Big With Finished Products at Scale

3D printing has become part of mainstream consciousness thanks, mostly, to the prospect of desktop printers for consumer prices. But these are imperfect, and the dream of an at-home replicator still eludes us. The manufacturing industry, however, is much closer to using 3D printers at scale.

Not long ago, we wrote about Carbon’s partnership with Adidas to mass-produce shoe midsoles. This is significant because, whereas industrial 3D printing has focused on prototyping to date, improving cost, quality, and speed are making it viable for finished products.

According to ARK, 3D printing may grow into a $41 billion market by 2020, and Wood noted a McKinsey forecast of as much as $490 billion by 2025. “McKinsey will be right if 3D printing actually becomes a part of the industrial production process, so end-use parts,” Wood said.

4. CRISPR Starts With Genetic Therapy, But It Doesn’t End There

According to ARK, the cost of genome editing has fallen 28x to 52x (depending on reagents) in the last four years. CRISPR is the technique leading the genome editing revolution, dramatically cutting time and cost while maintaining editing efficiency. Despite its potential, Wood said she isn’t hearing enough about it from investors yet.

“There are roughly 10,000 monogenic or single-gene diseases. Only 5% are treatable today,” she said. ARK believes treating these diseases is worth an annual $70 billion globally. Other areas of interest include stem cell therapy research, personalized medicine, drug development, agriculture, biofuels, and more.

Still, the big names in this area—Intellia, Editas, and CRISPR—aren’t on the radar.

“You can see if a company in this space has a strong IP position, as Genentech did in 1980, then the growth rates can be enormous,” Wood said. “Again, you don’t hear these names, and that’s quite interesting to me. We think there are very low expectations in that space.”

5. Mobile Transactions Could Grow 15x by 2020

By 2020, 75% of the world will own a smartphone, according to ARK. Amid smartphones’ many uses, mobile payments will be one of the most impactful. Coupled with better security (biometrics) and wider acceptance (NFC and point-of-sale), ARK thinks mobile transactions could grow 15x, from $1 trillion today to upwards of $15 trillion by 2020.

In addition, to making sharing economy transactions more frictionless, they are generally key to financial inclusion in emerging and developed markets, ARK says. And big emerging markets, such as India and China, are at the forefront, thanks to favorable regulations.

“Asia is leading the charge here,” Wood said. “You look at companies like Tencent and Alipay. They are really moving very quickly towards mobile and actually showing us the way.”

6. Robotics and Automation to Liberate $12 Trillion by 2035

Robots aren’t just for auto manufacturers anymore. Driven by continued cost declines and easier programming, more businesses are adopting robots. Amazon’s robot workforce in warehouses has grown from 1,000 to nearly 50,000 since 2014. “And they have never laid off anyone, other than for performance reasons, in their distribution centers,” Wood said.

But she understands fears over lost jobs.

This is only the beginning of a big round of automation driven by cheaper, smarter, safer, and more flexible robots. She agrees there will be a lot of displacement. Still, some commentators overlook associated productivity gains. By 2035, Wood said US GDP could be $12 trillion more than it would have been without robotics and automation—that’s a $40 trillion economy instead of a $28 trillion economy.

“This is the history of technology. Productivity. New products and services. It is our job as investors to figure out where that $12 trillion is,” Wood said. “We can’t even imagine it right now. We couldn’t imagine what the internet was going to do with us in the early ’90s.”

7. Blockchain and Cryptoassets: Speculatively Spectacular

Blockchain-enabled cryptoassets, such as Bitcoin, Ethereum, and Steem, have caused more than a stir in recent years. In addition to Bitcoin, there are now some 700 cryptoassets of various shapes and hues. Bitcoin still rules the roost with a market value of nearly $40 billion, up from just $3 billion two years ago, according to ARK. But it’s only half the total.

“This market is nascent. There are a lot of growing pains taking place right now in the crypto world, but the promise is there,” Wood said. “It’s a very hot space.”

Like all young markets, ARK says, cryptoasset markets are “characterized by enthusiasm, uncertainty, and speculation.” The firm’s blockchain products lead, Chris Burniske, uses Twitter—which is where he says the community congregates—to take the temperature. In a recent Twitter poll, 62% of respondents said they believed the market’s total value would exceed a trillion dollars in 10 years. In a followup, more focused on the trillion-plus crowd, 35% favored $1–$5 trillion, 17% guessed $5–$10 trillion, and 34% chose $10+ trillion.

Looking past the speculation, Wood believes there’s at least one big area blockchain and cryptoassets are poised to break into: the $500-billion, fee-based business of sending money across borders known as remittances.

“If you look at the Philippines-to-South Korean corridor, what you’re seeing already is that Bitcoin is 20% of the remittances market,” Wood said. “The migrant workers who are transmitting currency, they don’t know that Bitcoin is what’s enabling such a low-fee transaction. It’s the rails, effectively. They just see the fiat transfer. We think that that’s going to be a very exciting market.”

https://singularityhub.com/2017/06/16/the-disruptive-technologies-about-to-unleash-trillion-dollar-markets/

World’s first commercial CO2 removal plant begins operation

June 29, 2017

Zurich, Switzerland-based Climeworks asks, What if we could remove carbon dioxide directly from the air? Well, with a little help from technology, that is exactly what the company is doing.

The world’s first commercial carbon capture facility opened in Zurich, Switzerland on June 3, perched beside a waste incineration facility and a large greenhouse. Climeworks is a spin-off company from the Swiss science, technology, engineering, and mathematics university ETH Zurich. The startup company built the facility and Agricultural firm Gebrüder Meier Primanatura, which owns the huge greenhouse next door, will use the heat and renewable electricity provided by the carbon capture facility to run the greenhouse.
The technology behind carbon dioxide collection
The carbon capture plant consists of three stacked shipping containers that hold six CO2 collectors each. Each CO2 collector consists of a spongy filter. Fans draw ambient air into and through the collectors until they are fully saturated, while clean, CO2-free air is released back into the atmosphere, a process that takes about three hours.
Untitled

Climeworks

The containers are closed and then heated to 100 degrees Celsius (212 degrees Fahrenheit), after which the pure CO2 gas is released into containers that can either be buried underground or used for other purposes. And re-purposing the CO2 is what is so darned neat about the facility.“You can do this over and over again,” Climeworks director Jan Wurzbacher told Fast Company, according to Futurism. “It’s a cyclic process. You saturate with CO2, then you regenerate, saturate, regenerate. You have multiple of these units, and not all of them go in parallel. Some are taking in CO2, some are releasing CO2.”

What is carbon capture and storage?
Basically, carbon capture and storage (CCS) involves three phases. Capture – Carbon dioxide is removed by one of three processes, post-combustion, pre-combustion or oxyfuel combustion. These methods can remove up to 90 percent of the CO2.The next phase is Transportation – Once the CO2 is captured as a gas, it is compressed and transported to suitable sites for storage. Quite often, the CO2 is piped. In Climeworks facility, it is collected in containers on-site to be used in a variety of industries.

Carbon storage diagram showingmethods of CO2 injection.

Carbon storage diagram showingmethods of CO2 injection.
U.S. Department of Energy

Storage of CO2 is the third stage of the CCS process – This involves exactly what the word implies, storage. Right now, the primary way of doing this is to inject the COs into a geological formation that would keep it safely underground. Depleted oil and gas fields or deep saline formations have been suggested.Again, Climeworks is re-purposing the captured pure CO2. They are selling containers of carbon dioxide gas to a number of key markets, including food and beverage industries, commercial agriculture, the energy sector and the automotive industry. This atmospheric CO2 can be found in carbonated drinks, in agriculture or for producing carbon-neutral hydrocarbon fuels and materials. Futurism is reporting that Climeworks says that if we are to keep the planet’s temperature from increasing more than 2 degrees Celsius (3.6 degrees Fahrenheit), we will need hundreds of thousands of these carbon capture facilities. But at the same time, this does not mean we should stop trying to lower greenhouse gas emissions. All over the planet, technology is being used to find innovative ways to capture carbon and use it for other purposes. One example – researchers at the University of California, Los Angeles (UCLA), have found a way to turn captured carbon into concrete for use in the building trade.

The smartphone is eventually going to die, and then things are going to get really crazy

May 28, 2017

One day, not too soon — but still sooner than you think — the smartphone will all but vanish, the way beepers and fax machines did before it.

Make no mistake: We’re still probably at least a decade away from any kind of meaningful shift away from the smartphone. (And if we’re all cyborgs by 2027, I’ll happily eat my words. Assuming we’re still eating at all, I guess.)

Yet, piece by piece, the groundwork for the eventual demise of the smartphone is being laid by Elon Musk, Microsoft, Facebook, Amazon, and a countless number of startups that still have a part to play.

And, let me tell you: If and when the smartphone does die, that’s when things are going to get really weird for everybody. Not just in terms of individual products but in terms of how we actually live our everyday lives and maybe our humanity itself.

Here’s a brief look at the slow, ceaseless march toward the death of the smartphone — and what the post-smartphone world is shaping up to look like.

The short term

People think of the iPhone and the smartphones it inspired as revolutionary devices — small enough to carry everywhere, hefty enough to handle an increasingly large number of daily tasks, and packed full of the right mix of cameras and GPS sensors to make apps like Snapchat and Uber uniquely possible.

But consider the smartphone from another perspective. The desktop PC and the laptop are made up of some combination of a mouse, keyboard, and monitor. The smartphone just took that model, shrank it, and made the input virtual and touch-based.

So take, for example, the Samsung Galaxy S8, unveiled this week. It’s gorgeous with an amazing bezel-less screen and some real power under the hood. It’s impressive, but it’s more refinement than revolution.

Samsung Galaxy S8Samsung Galaxy S8.Business Insider

Tellingly, though, the Galaxy S8 ships with Bixby, a new virtual assistant that Samsung promises will one day let you control every single feature and app with just your voice. It will also ship with a new version of the Gear VR virtual reality headset, developed in conjunction with Facebook’s Oculus.

The next iPhone, too, is said to be shipping with upgrades to the Siri assistant, along with features aimed at bringing augmented reality into the mainstream.

And as devices like the Amazon Echo, the Sony PlayStation VR, and the Apple Watch continue to enjoy limited but substantial success, expect to see a lot more tech companies large and small taking more gambles and making more experiments on the next big wave in computing interfaces.

The medium term

In the medium term, all of these various experimental and first-stage technologies will start to congeal into something familiar but bizarre.

Microsoft, Facebook, Google, and the Google-backed Magic Leap are all working to build standalone augmented-reality headsets, which project detailed 3D images straight into your eyes. Even Apple is rumored to be working on this.

Microsoft’s Alex Kipman recently told Business Insider that augmented reality could flat-out replace the smartphone, the TV, and anything else with a screen. There’s not much use for a separate device sitting in your pocket or on your entertainment center if all your calls, chats, movies, and games are beamed into your eyes and overlaid on the world around you.

apple airpods in earApple’s AirPods keep the Siri virtual assistant in your ears.Hollis Johnson/Business Insider

At the same time, gadgetry like the Amazon Echo or Apple’s own AirPods become more and more important in this world. As artificial-intelligence systems like Apple’s Siri, Amazon’s Alexa, Samsung’s Bixby, and Microsoft’s Cortana get smarter, there will be a rise not just in talking to computers but in having them talk back.

In other words, computers will hijack your senses, more so than they already do, with your sight and your hearing intermediated by technology. It’s a little scary. Think of what Facebook glitches could mean in a world where it doesn’t just control what you read on your phone but in what you see in the world around you.

The promise, though, is a world where real life and technology blend more seamlessly. The major tech companies promise that this future means a world of fewer technological distractions and more balance, as the physical and digital world become the same thing. You decide how you feel about that.

The really crazy future

Still, all those decade-plus investments in the future still rely on gadgetry that you have to wear, even if it’s only a pair of glasses. Some of the craziest, most forward-looking, most unpredictable advancements go even further — provided you’re willing to wait a few extra decades, that is.

This week, we got our first look at Neuralink, a new company cofounded by Musk with a goal of building computers into our brains by way of “neural lace,” a very early-stage technology that lays on your brain and bridges it to a computer. It’s the next step beyond even that blending of the digital and physical worlds, as human and machine become one.

Assuming the science works — and lots of smart people believe that it will — this is the logical endpoint of the road that smartphones started us on. If smartphones gave us access to information and augmented reality puts that information in front of us when we need it, then putting neural lace in our brains just closes the gap.

Ray KurzweilFuturist Ray Kurzweil has been predicting our cyborg futures for a long time now.Tech Insider

Musk has said this is because the rise of artificial intelligence — which underpins a lot of the other technologies, including voice assistants and virtual reality — means humans will have to augment themselves just to keep up with the machines. If you’re really curious about this idea, futurist Ray Kurzweil is the leading voice on the topic.

The idea of human/machine fusion is a terrifying one, with science-fiction writers, technologists, and philosophers alike having very good cause to ask what even makes us human in the first place. At the same time, the idea is so new that nobody really knows what this world would look like in practice.

So if and when the smartphone dies, it’ll actually be the end of an era in more ways than one. It’ll be the end of machines that we carry with us passively and the beginning of something that bridges our bodies straight into the ebb and flow of digital information. It’s going to get weird.

And yet, lots of technologists already say that smartphones give us superpowers with access to knowledge, wisdom, and abilities beyond anything nature gave us. In some ways, augmenting the human mind would be the ultimate superpower. Then again, maybe I’m just an optimist.

http://www.businessinsider.com/death-of-the-smartphone-and-what-comes-after-2017-3

Video

Watch this all-electric ‘flying car’ take its first test flight in Germany

April 24, 2017

 

Flying cars, that perennial dream for futurists that always seem to be at least five years away, may be a little closer to reality than we realize. A lot of prototypes have been showcased recently, and a lot of money is being tossed around. More people than ever seem to buy into the crazy notion that in the near future we’ll be buzzing between rooftops in private, autonomous drones. Today, Munich-based Lilium Aviation announced an important milestone: the first test flight of its all-electric, two-seater, vertical take-off and landing (VTOL) prototype.

In a video provided by the Munich-based startup, the aircraft can be seen taking off vertically like a helicopter, and then accelerating into forward flight using wing-borne lift.

The craft is powered by 36 separate jet engines mounted on its 10-meter long wings via 12 movable flaps. At take-off, the flaps are pointed downwards to provide vertical lift. And once airborne, the flaps gradually tilt into a horizontal position, providing forward thrust.

During the tests, the jet was piloted remotely, but its operators say their first manned flight is close-at-hand. And Lilium claims that its electric battery “consumes around 90 percent less energy than drone-style aircraft,” enabling the aircraft to achieve a range of 300 kilometers (183 miles) with a maximum cruising speed of 300 kph (183 mph).

In many ways, electric-powered aviation is still in its infancy. Electric cars with thousand-pound batteries generally max out at 300 miles per charge. The most sophisticated electric aircraft today can barely muster an hour aloft at 99 mph — and that’s without vertical take-off and landing. But Patrick Nathen, co-founder of Lilium Jet and the startup’s head of calculation and design, said their battery technology will get the job done.

“It’s the same battery that you can find in any Tesla,” Nathen told The Verge. “The concept is that we are lifting with our wings as soon as we progress into the air with velocity, which makes our airplane very efficient. Compared to other flights, we have extremely low power consumption.”

Safety is a major emphasis at Lilium, Nathen added. While the startup is working toward having its aircraft piloted autonomously, it intends to use human pilots in the meantime. There will be parachutes on board, and something called the “Flight Envelope Protection System” will prevents the pilot from performing maneuvers or flying the aircraft beyond safe flight parameters.

The plan is to eventually build a 5-passenger version of the jet. So anyone who dreams of a minivan version of the Jetsons’ flying car, this craft is for you. And naturally, Lilium envisions its aircraft used in dense, urban areas in an on-demand capacity. Pull out your smartphone, book a seat, and make your way to the nearest launchpad, which can be found at street level or on a nearby rooftop. Like Uber, but for flying cars (even though Uber is already working on its own version).And before you dismiss this as another luxury mode of transportation for the super-rich, Nathen insists the goal is to get the cost low enough so everyone can use it. A 55-minute taxi ride from Midtown Manhattan to JFK airport, with a fare of $55, becomes a breezy 5 minute flight in a Lilium jet, for as low as $6.

If it seems fantastical, it’s probably because it is. Flying cars, of course, are ridiculous. Wild-eyed inventors have been pursuing the idea for decades, with little to show for it. Many have gone broke, and some have died, trying to turn their fever dreams into reality. The fact that flying cars act as a stand-in for some distant, unattainable future isn’t a mistake. There are many things about flying cars that make them impractical, unworkable, and even wrongheaded. The problem is that these aircraft don’t solve any problems for normal human beings, nor do they even gesture toward a meaningful impact in the distant future. But that hasn’t stopped many from trying. And with better materials, autonomous navigation systems, and other technical advances, dozens of well-heeled investors are convinced that we’re on the cusp of seeing flying cars — or at least small, electric, autonomously flown commuter planes — take to the skies.

“We are right now at the magical point,” Nathen said. “We have without a doubt started at the perfect time… This is why you can see a lot of different projects from all over the world.”

http://www.theverge.com/2017/4/20/15369850/lilium-jet-flying-car-first-flight-vtol-aviation-munich

10 Tech Trends That Made the World Better in 2016

March 30, 2017

2016 was an incredible year for technology, and for humanity.

Despite all the negative political-related news, there were 10 tech trends this year that positively transformed humanity.

For this “2017 Kick-Off” post, I reviewed 52 weeks of science and technology breakthroughs, and categorized them into the top 10 tech trends changing our world.

I’m blown away by how palpable the feeling of exponential change has become.

I’m also certain that 99.99% of humanity doesn’t understand or appreciate the ramifications of what is coming.

In this post, enjoy the top 10 tech trends of the past 12 months and why they are important to you.

Let’s dive in…

1. We Are Hyper-Connecting the World

In 2010, 1.8 billion people were connected. Today, that number is about 3 billion, and by 2022 – 2025, that number will expand to include every human on the planet, approaching 8 billion humans.

Unlike when I was connected 20 years ago at 9,600 baud via AOL, the world today is coming online at one megabit per second or greater, with access to the world’s information on Google, access to the world’s products on Amazon, access to massive computing power on AWS and artificial intelligence with Watson… not to mention crowdfunding for capital and crowdsourcing for expertise.

Looking back at 2016, you can feel the acceleration. Here are seven stories that highlight the major advances in our race for global connectivity:

a) Google’s 5G Solar Drones Internet Service: Project Skybender is Google’s secretive 5G Internet drone initiative. News broke this year that they have been testing these solar-powered drones at Spaceport America in New Mexico to explore ways to deliver high-speed Internet from the air. Their purported millimeter wave technology could deliver data from drones up to 40 times faster than 4G.

b) Facebook’s Solar Drone Internet Service: Even before Google, Facebook has been experimenting with a solar-powered drone, also for the express purpose of providing Internet to billions. The drone has the wingspan of an airliner and flies with roughly the power of three blowdryers.

c) ViaSat Plans 1 Terabit Internet Service: ViaSat, a U.S.-based satellite company, has teamed up with Boeing to launch three satellites to provide 1 terabit-per-second Internet connections to remote areas, aircraft and maritime vehicles. ViaSat is scheduled to launch its satellite ViaSat2 in early 2017.

d) OneWeb Raises $1.2B for 900 Satellite Constellation: An ambitious low-Earth orbit satellite system proposed by my friends Greg Wyler, Paul Jacobs and Richard Branson just closed $1.2 billion in financing. This 900-satellite system will offer global internet services as soon as 2019.

e) Musk Announces 4,425 Internet Satellite System: Perhaps the most ambitious plan for global internet domination was proposed this year by SpaceX founder Elon Musk, with plans for SpaceX to deploy a 4,425 low-Earth orbit satellite system to blanket the entire planet in broadband.

2. Solar/Renewables Cheaper Than Coal

We’ve just exceeded a historic inflection point. 2016 was the year solar and renewable energy became cheaper than coal.

In December, the World Economic Forum reported that solar and wind energy is now the same price or cheaper than new fossil fuel capacity in more than 30 countries.

“As prices for solar and wind power continue their precipitous fall, two-thirds of all nations will reach the point known as ‘grid parity’ within a few years, even without subsidies,” they added.

This is one of the most important developments in the history of humanity, and this year marked a number of major milestones for renewable energy.

Here’s 10 data points (stories) I’ve hand-picked to hammer home the historic nature of this 2016 achievement.

a) 25 percent of the World’s Power Comes From Renewables: REN21, a global renewable energy policy network, published a report showing that a quarter of the world’s power now comes from renewable energy. International investment in renewable energy reached $286 billion last year (with solar accounting for over $160b of this), and it’s accelerating.

b) In India, Solar Is Now Cheaper Than Coal: An amazing milestone indeed, and India is now on track to deploy >100 gigawatts of solar power by 2022.

c) The UK Is Generating More Energy From Solar Than Coal: For the first time in history, this year the U.K. has produced an estimated 6,964 GWh of electricity from solar cells, 10% higher than the 6,342 GWh generated by coal.

d) Coal Plants Being Replaced by Solar Farms: The Nanticoke Generating Station in Ontario, once North America’s largest coal plant, will be turned into a solar farm.

e) Coal Will Never Recover: The coal industry, once the backbone of U.S. energy, is fading fast on account of renewables like solar and wind. Official and expert reports now state that it will never recover (e.g., coal power generation in Texas is down from 39% in early 2015 to 24.8% in May 2016).

f) Scotland Generated 106% Energy From Wind: This year, high winds boosted renewable energy output to provide 106% of Scotland’s electricity needs for a day.

g) Costa Rica Ran on Renewables for 2+ Months: The country ran on 100% renewable energy for 76 days.

h) Google to Run 100% on Renewable Energy: Google has announced its entire global business will be powered by renewable energy in 2017.

i) Las Vegas’ City Government Meets Goal of 100% Power by Renewables: Las Vegas is now the largest city government in the country to run entirely on renewable energy.

j) Tesla’s Gigafactory: Tesla’s $5 billion structure in Nevada will produce 500,000 lithium ion batteries annually and Tesla’s Model III vehicle. It is now over 30 percent complete… the 10 million square foot structure is set to be done by 2020. Musk projected that a total of 100 Gigafactories could provide enough storage capacity to run the entire planet on renewables.

3. Glimpsing the End of Cancer and Disease

Though it may seem hard to believe, the end of cancer and disease is near.

Scientists and researchers have been working diligently to find novel approaches to combating these diseases, and 2016 saw some extraordinary progress in this regard.

Here’re my top 10 picks that give me great faith about our abilities to cure cancer and most diseases:

a) Cancer Immunotherapy Makes Strides (Extraordinary Results): Immunotherapy involves using a patient’s own immune system (in this case, T cells) to fight cancer. Doctors remove immune cells from patients, tag them with “receptor” molecules that target the specific cancer, and then infuse the cells back in the body. During the study, 94% of patients with acute lymphoblastic leukemia (ALL) saw symptoms vanish completely. Patients with other blood cancers had response rates greater than 80%, and more than half experienced complete remission.

b) In China, CRISPR/Cas9 used in First Human Trial: A team of scientists in China (Sichuan University) became the first to treat a human patient with an aggressive form of lung cancer with the groundbreaking CRISPR-Cas9 gene-editing technique.

c) NIH Approves Human Trials Using CRISPR: A team of physicians at the University of Pennsylvania’s School of Medicine had their project of modifying the immune cells of 18 different cancer patients with the CRISPR-Cas9 system approved by the National Institute of Health. Results are TBD.

d) Giant Leap in Treatment of Diabetes from Harvard: For the first time, Harvard stem cell researchers created “insulin producing” islet cells to cure diabetes in mice. This offers a promising cure in humans as well.

e) HIV Genes Cut Out of Live Animals Using CRISPR: Scientists at the Comprehensive NeuroAIDS Center at Temple University were able to successfully cut out the HIV genes from live animals, and they had over a 50% success rate.

f) New Treatment Causes HIV Infected Cells to Vanish: A team of scientists in the U.K. discovered a new treatment for HIV. The patient was treated with vaccines that helped the body recognize the HIV-infected cells. Then, the drug Vorinostat was administered to activate the dormant cells so they could be spotted by the immune system.

g) CRISPR Cures Mice of Sickle Cell Disease: CRISPR was used to completely cure sickle cell by editing the errant DNA sequence in mice. The treatment may soon be used to cure this disease, which affects about 100,000 Americans.

h) Eradicating Measles (in the U.S.): The World Health Organization (WHO) announced that after 50 years, they have successfully eradicated measles in the U.S. This is one of the most contagious diseases around the world.

i) New Ebola Vaccine Proved to be 100% Effective: None of the nearly 6,000 individuals vaccinated with rVSV-ZEBOV in Guinea, a country with more than 3,000 confirmed cases of Ebola, showed any signs of contracting the disease.

j) Eradicating Polio: The World Health Organization has announced that it expects to fully eradicate polio worldwide by Early 2017.

4. Progress on Extending Human Life

I am personally convinced that we are on the verge of significantly impacting human longevity. At a minimum, making “100 years old the new 60,” as we say at Human Longevity Inc.

This year, hundreds of millions of dollars were poured into research initiatives and companies focused on extending life.

Here are five of the top stories from 2016 in longevity research:

a) 500-Year-Old Shark Discovered: A Greenland shark that could have been over 500 years old was discovered this year, making the species the longest-lived vertebrate in the world.

b) Genetically Reversing Aging: With an experiment that replicated stem cell-like conditions, Salk Institute researchers made human skin cells in a dish look and behave young again, and mice with premature aging disease were rejuvenated with a 30% increase in lifespan. The Salk Institute expects to see this work in human trials in less than 10 years.

c) 25% Life Extension Based on Removal of Senescent Cells: Published in the medical journal Nature, cell biologists Darren Baker and Jan van Deursen have found that systematically removing a category of living, stagnant cells can extend the life of mice by 25 percent.

d) Funding for Anti-Aging Startups: Jeff Bezos and the Mayo Clinic-backed Anti-Aging Startup Unity Biotechnology with $116 million. The company will focus on medicines to slow the effects of age-related diseases by removing senescent cells (as mentioned in the article above).

e) Young Blood Experiments Show Promising Results for Longevity: Sakura Minami and her colleagues at Alkahest, a company specializing in blood-derived therapies for neurodegenerative diseases, have found that simply injecting older mice with the plasma of young humans twice a week improved the mice’s cognitive functions as well as their physical performance. This practice has seen a 30% increase in lifespan, and increase in muscle tissue and cognitive function.

More at: https://singularityhub.com/2017/01/05/10-tech-trends-that-made-the-world-better-in-2016/

14-year-old girl who died of cancer wins right to be cryogenically frozen

December 18, 2016

15644921_10154835575804483_31310193_n

A 14-year-old girl who said before dying of cancer that she wanted a chance to live longer has been allowed by the high court to have her body cryogenically frozen in the hope that she can be brought back to life at a later time.

The court ruled that the teenager’s mother, who supported the girl’s wish to be cryogenically preserved, should be the only person allowed to make decisions about the disposal of her body. Her estranged father had initially opposed her wishes.

During the last months of her life, the teenager, who had a rare form of cancer, used the internet to investigate cryonics. Known only as JS, she sent a letter to the court: “I have been asked to explain why I want this unusual thing done. I’m only 14 years old and I don’t want to die, but I know I am going to. I think being cryo‐preserved gives me a chance to be cured and woken up, even in hundreds of years’ time.

“I don’t want to be buried underground. I want to live and live longer and I think that in the future they might find a cure for my cancer and wake me up. I want to have this chance. This is my wish.”

Following the ruling, in a case described by the judge as exceptional, the body of JS has now been preserved and transported from where she lived in London to the US, where it has been frozen “in perpetuity” by a commercial company at a cost of £37,000.

The girl’s parents are divorced. She had lived with her mother for most of her life and had had no face-to-face contact with her father since 2008. She resisted his attempts to get back in touch when he learnt of her illness in 2015.

The judge, Mr Justice Peter Jackson, ruled that nothing about the case should be reported while she was alive because media coverage would distress her. She was too ill to attend the court hearing but the judge visited her in hospital.

Jackson wrote: “I was moved by the valiant way in which she was facing her predicament. It is no surprise that this application is the only one of its kind to have come before the courts in this country, and probably anywhere else. It is an example of the new questions that science poses to the law, perhaps most of all to family law … No other parent has ever been put in [the] position [of JS’s father].”

He added: “A dispute about a parent being able to see his child after death would be momentous enough on its own if the case did not also raise the issue of cryonic preservation.”

Since the first preservation by freezing in the 1960s the process has been performed only a few hundred times. The body has to be prepared shortly after death, ideally within minutes. Arrangements then have to be made for the body to be transported by a registered funeral director.

“The scientific theory underlying cryonics is speculative and controversial, and there is considerable debate about its ethical implications,” Jackson said. “On the other hand, cryopreservation, the preservation of cells and tissues by freezing, is now a well-known process in certain branches of medicine, for example the preservation of sperm and embryos as part of fertility treatment. Cryonics is cryopreservation taken to its extreme.”

The judge said the girl’s family was not well off but that her mother’s parents had raised the money. A voluntary UK group of cryonics enthusiasts, who were not medically trained, had offered to help make arrangements.

Co-operation of a hospital was required. “This situation gives rise to serious legal and ethical issues for the hospital trust,” the judge observed, “which has to act within the law and has duties to its other patients and to its staff.”

The hospital trust in the case was willing to help although it stressed it was not endorsing cryonics. “On the contrary, all the professionals feel deep unease about it,” the judge said.

The Human Tissue Authority (HTA), which regulates organisations which remove, store and use human tissue, had been consulted but said it had no remit to intervene in such a case.

“The HTA would be likely to make representations that activities of the present kind should be brought within the regulatory framework if they showed signs of increasing,” Jackson said.

The HTA said: “We are gathering information about cryopreservation to determine how widespread it is currently, or could become in the future, and any risks it may pose to the individual, or public confidence more broadly. We are in discussion with key stakeholders … and the possible need for regulatory oversight.”

The government may need to intervene in future, Jackson said: “It may be … events in this case suggest the need for proper regulation of cryonic preservation in this country if it is to happen in future.”

Inquiries made of American authorities revealed that there was no prohibition on human remains being shipped to the US for cryonic preservation, providing certain provisions were made.

During the course of the 14-year-old’s case, the father changed his mind and told the court: “I respect the decisions [my daughter] is making. This is the last and only thing she has asked from me.”

A child cannot make a will and the court had to decide where the girl’s best interests lay. The judge concluded that allowing the mother to make a decision about her daughter would be in her best interests. The girl died peacefully knowing that her body would be frozen, the judge recorded.

The Department of Health said: “Cases such as this are rare. Although there are no current plans for legislative change in this area, this is an area we will continue to keep under review with the Human Tissue Authority.

https://www.theguardian.com/science/2016/nov/18/teenage-girls-wish-for-preservation-after-death-agreed-to-by-court

Ark of the immortals: The future-proof plan to freeze out death

December 18, 2016

murray-ballard_the-prospect-of-immortality_2112-800x533

Life at the edge of death Murray Ballard, from the book The Prospect of Immortality

“WE’RE taking people to the future!” says architect Stephen Valentine, as we drive through two gigantic gates into a massive plot of land in the middle of the sleepy, unassuming town that is Comfort, Texas. The scene from here is surreal. A lake with a newly restored wooden gazebo sits empty, waiting to be filled. A pregnant zebra strolls across a nearby field. And out in the distance some men in cowboy hats are starting to clear a huge area of shrub land. Soon the first few bricks will be laid here, marking the start of a scientific endeavour like no other.

After years of searching, Valentine chose this site as the unlikely home of the new Mecca of cryogenics. Called Timeship, the monolithic building will become the world’s largest structure devoted to cryopreservation, and will be home to thousands of people who are neither dead nor alive, frozen in time in the hope that one day technology will be able to bring them back to life. And last month, building work began.

computer image
Computer rendering of the Timeship project

Cryonics, the cooling of humans in the hope of reanimating them later, has a reputation as a vanity project for those who have more money than sense, but this “centre for immortality” is designed to be about much more than that. As well as bodies, it will store cells, tissues and organs, in a bid to drive forward the capabilities of cryogenics, the study of extremely low temperatures that has, in the last few years, made remarkable inroads in areas of science that affect us all; fertility therapy, organ transplantation and emergency medicine. What’s more, the cutting-edge facilities being built here should break through the limitations of current cryopreservation, making it more likely that tissues – and whole bodies – can be successfully defrosted in the future.

Timeship is the brainchild of Bill Faloon and Saul Kent, two entrepreneurs and prominent proponents of life extension research. Their vision was to create a building that would house research laboratories, DNA from near-extinct species, the world’s largest human organ biobank, and 50,000 cryogenically frozen bodies. Kent called it “all part of a plan to conquer ageing and death”.

In 1997, Kent asked Valentine, an architect based in New York, whether he could design a building that was stable enough to operate continuously for 100 years with minimal human input. It needed to withstand earthquakes, to be protected from natural disasters and acts of violence, and to survive without the main power supply for months on end. It was a list of demands that no building in the world currently satisfies.

Valentine spent months drawing up proposals for the building, together with advice from engineers who had previously worked for NASA and security experts from around the world. “We had to address everything from pandemics and cyberattacks to snipers and global warming,” says Fred Waterman, a risk mitigation expert on the Timeship team. The designs were approved by Kent but immediately put on ice. He believed the technology that would make the building worthwhile was not yet advanced enough to warrant its construction.

At body temperature, cells need a constant supply of oxygen. Without it they start to die and tissues decay. At low temperatures, cells need less oxygen because the chemical activity of metabolism slows down. At very low temperatures, metabolism stops altogether. The problem faced when trying to preserve human tissue by freezing it is that water in the tissue forms ice and causes damage. The trick is to replace the water with cryoprotectants, essentially antifreeze, which prevent ice from forming. This works well for small, uncomplicated structures like sperm and eggs. But when you try to scale it up to larger organs, damage still occurs.

But in 2000, Greg Fahy, a cryobiologist at 21st Century Medicine in Fontana, California, made a breakthrough with a technique called vitrification. It involves adding cryoprotectants then rapidly cooling an organ to prevent any freezing; instead the tissue turns into a glass-like state. Fahy later showed that you could vitrify a whole rabbit kidney that functioned well after thawing and transplantation. This was the breakthrough Kent and Faloon had been waiting for.

Cold comfort farm

The pair gave Valentine a multimillion-dollar budget and told him to find land on which to build Timeship. Valentine spent five years scouring the US, believing it to be the country most likely to remain politically stable for the next 100 years. He homed in on four states that fitted his exacting criteria. And after evaluating more than 200 sites in Texas alone, Valentine ended up in Comfort. Here he discovered the Bildarth Estate, which came with acres of land, a 1670-square-metre mansion and even a few zebras.

“There’s an urgent need to be able to store whole organs for longer”

Since then, Valentine, together with a team of specialists, has fine-tuned the project. Timeship’s architectural plans make it look like something between a fortress and a spaceship. The central building is a low-lying square with a single entrance. This sits inside a circular wall surrounded by concentric concrete rings. Inside are what Valentine calls “neighbourhoods”, collections of thermos-like dewars that will store the cryopreserved DNA, organs and bodies (see “Cool design”).

Parts of the project are somewhat theatrical – backup liquid nitrogen storage tanks are covered overhead by a glass-floored plaza on which you can walk surrounded by a fine mist of clouds – others are purely functional, like the three wind turbines that will provide year-round back-up energy.

The question is, do we need Timeship? Such an extravagant endeavour might not be vital, but it looks as if something similar will be necessary sooner or later. In fact, the strongest argument for such a facility, and the technological developments it promises, might have nothing to do with the desire to be frozen for the future.

We already have small biobanks for storing bones from human donors, as well as tendons, ligaments and stem cells. But with rapid advances in regenerative medicine, there is a growing need for large-scale facilities in which we can store more cryogenically frozen biological material.

Stem cells, for instance, are increasingly cryopreserved after being extracted and grown outside the body for use in regenerative therapies. “Beyond the age of 50, it’s harder to isolate stem cells for regenerative medicine,” says Mark Lowdell at University College London. “If I were in my 30s, I would certainly be cryopreserving some bone marrow for future tissue to fix my tennis injuries.” Lowdell will soon do the first transplant of a tissue-engineered larynx created from a donor larynx that has been seeded with cryopreserved stem cells to reduce the risk of rejection.

Then there’s the problem of organ shortage. In the US, almost 31,000 transplants were carried out in 2015, but at least six times as many people are on the waiting list – each day 12 people die before they can get a kidney. To make matters worse, many organs go to waste because their shelf life is too short to find a well-matched patient. Nearly 500 kidneys went unused in the US last year because the recipient couldn’t get the organ in time.

So there’s an urgent need to be able to store whole organs for longer. The issue is so important that the US government this month pledged to start funding research into this very area. We can already reversibly cryopreserve small bundles of cells – many thousands of babies have been born from vitrified human embryos. Doing the same with large organs, like kidneys or hearts, is harder, but not impossible. Over the past decade, for instance, several babies have been born from ovarian tissue that was removed before chemotherapy, cryopreserved and later replaced. Similarly, rabbit kidneys and rat limbs have been cryopreserved, thawed and placed in a new body. Fahy says his team is well on its way to the first human trial of a cryogenically frozen organ. “After decades of research, we’re now at a tipping point,” he says. Having improved both the vitrification technique and the cryoprotectant solution, they are moving to trials in pigs, and human trials could follow within five years, he says.

That might help prevent wastage, but we would still have a shortage of organs for transplant. Another solution is to grow them from scratch using our own stem cells, and keep them until we need them. So far, tiny 3D heart-like organs have been made from stem cells alone, as well as mini kidneys and livers, all with the ultimate aim of bioengineering replacement organs for transplantation.

Once organs can be produced like this, we will need a way of storing either the raw material or the organs themselves. “I’m not enthusiastic about the notion of freezing whole heads, but I can certainly imagine people needing to freeze cells, or ‘starter kits’ for the development of tissues, or even whole organs – and in the not-so-distant future,” says Arthur Caplan, a bioethicist at New York University Langone Medical Center.

Like Caplan, most scientists I spoke to said it was becoming more likely that we could bring individual cryopreserved organs back to life, but were less convinced by the idea of freezing whole bodies. So I decided to visit Alcor Life Extension Foundation, the world’s biggest cryonics facility, in Scottsville, Arizona, to find out what happens when a body is put on ice.

Alcor’s lobby has the feel of a doctor’s waiting room, except that lining the walls are portraits of men, women, children and the occasional dog. The people in the pictures are preserved there, some alongside their beloved pets.

Cool design

Aaron Drake, head of Alcor’s medical response team, says the company has more than 1000 clients signed up worldwide – 99 per cent are healthy, but 1 per cent have a terminal disease. Some of them want to freeze their whole body, others – known as “neuros” – opt for just the head.

Drake admits that the techniques his firm uses aren’t perfect, which is why they continue to research the process. Recently, Alcor scientists placed acoustical devices on the brains of neuros as they were lowered into liquid nitrogen, listening as the heads cooled to -196 °C. The colder they got, the more frequently the team heard acoustical anomalies, which they attribute to micro-fracturing of the tissue. “That’s damage happening,” says Drake. It’s difficult to say what effects this might have. “It’s not universal or consistent, but it’s something we know doesn’t happen at around -140 °C.”

The problem is, to store a person at -140 °C, you have to keep them warmer than nitrogen’s boiling point, which is incredibly hard to do – certainly much harder than placing a body in a giant thermos full of liquid nitrogen, letting it boil and occasionally topping it up.

But at Timeship, Valentine thinks he’s cracked the problem. After years of experimentation, he has designed a system called a Temperature Control Vessel (TCV), a dewar that houses cryogenically preserved bodies, heads or tissues. Inside the dewar are moving rods that can be dipped into a pool of liquid nitrogen whenever a sensor notes that the temperature has risen from -140 °C. This would provide a relatively autonomous way of maintaining the contents at an ideal temperature (see “Cool design”).

Each TCV can carry hundreds of samples of tissue and organs, or four bodies and five heads.They are designed to be stacked together in a tessellating pattern that forms the neighbourhoods within the main building.

This should reduce some of the damage to brain tissue that the Alcor team heard. But even with that technology, is there any hope of reanimating a brain?

There is some evidence to suggest that certain properties of the mind – memories, for instance – can survive cryopreservation. In 2015, researchers trained worms to recognise a smell, then froze them. On thawing, the worms retained the smell memories. And this year, Fahy’s team cryopreserved a rabbit brain in a near-perfect state. Although the group used a chemical fixative that is not yet used in human preservation, the thawed rabbit brain appeared “uniformly excellent” when examined using electron microscopy.

“These kinds of experiments show that it’s not such a massive leap of faith to think that we could preserve the human mind,” says Max More, president and CEO of Alcor. But not everyone is convinced. Even if you could preserve the delicate structures of the human brain, the cryoprotectants themselves are toxic. “No matter how smart scientists are in the future, you can’t change mush into a functional brain,” says Caplan, “and I just don’t think that what we’re able to do right now to preserve the brain is good enough to ever bring it back to life.”

There are precedents for the idea that the human brain can be revived after being cooled, however. In 1986, two-and-a-half-year-old Michelle Funk fell into an icy creek where she was submerged for just over an hour. Despite showing no signs of life, doctors spent 2 hours warming her blood through a heart-lung machine. Eventually, she recovered fully. Her doctors figured that the sudden cooling of her brain must have slowed the organ’s need for oxygen, staving off brain damage.

“What we are doing is just an extension of emergency medicine – we are stretching time“

Funk’s recovery was so remarkable it spurred researchers to repeat the scenario experimentally in pigs and dogs – cryopreserving them for hours before bringing them back to life. The same procedure is now being tested in humans in a groundbreaking trial by surgeons at UPMC Presbyterian Hospital in Pittsburgh, Pennsylvania. There they are placing patients in suspended animation for a few hours, to buy time to fix injuries that would otherwise be lethal, such as gunshot wounds. The technique involves replacing the person’s blood with a cold saline solution and cooling the body. They will then try to fix the injuries and bring the patient back to life by slowly warming the body with blood.

That’s not so different from what goes on at Alcor, says More. “What we’re doing is trying to stretch the time in which the person is suspended. It’s just an extension of emergency medicine.” I ask More whether he really believes that his members will be brought back to life. “I don’t know if it will ever happen,” he says, “but we’re breaking no laws of physics here. Who is to say that in 100 years we won’t have the medical tools – some kind of nanotechnology perhaps – that can fix cells at an individual level and repair what’s necessary to revive someone in good health.”

This is the central argument in favour of cryonics – the possibility, no matter how slim, that it offers a chance of survival. “We think of cryonics as a scientific experiment,” says More. “People that are buried or cremated are our control group, and so far, everyone in the control group has died.”

Facing the future

It is an expensive experiment, however. Cryopreserving your body will set you back up to $220,000, payable on death – often via life insurance, with Alcor as the beneficiary.

“People often say that the money would be better spent on family or given to charity,” says Ole Moen, a philosopher and ethicist at the University of Oslo, Norway. “But what’s strange about this is that nobody complains when people spend money on expensive cancer treatments or long-term care – people drain the public healthcare budget trying to stay alive all the time,” he says. “So why complain when people want to spend their own money trying to live longer via cryonics?”

If you’re happy to fork out, there’s the big question of what kind of future you’d wake up to. “Even if you could get this technique up and running by some magical future science I believe you’d be a freak – you’d be so far out of it culturally, so lost, that you’d be at risk of being driven mad,” Caplan says.

With so many big unknowns, I leave Alcor and Timeship undecided on the utility of cryonics. What’s clear, though, is that the underlying research into cryopreservation is worthwhile. Whether it’s to help me have children, fix a future tennis injury or potentially even provide me with a new heart, I’d be first in line to freeze cells and tissues today that might help my future self live longer, and healthier.

On my way out of Alcor, I ask Drake whether he wants to be frozen, given that he has cryopreserved so many others. “Yes,” he says. “Not because I want to be immortal, I don’t think that’s possible. I just want to see if all this work was futile. I was the last person these people saw before they took their last breath. Will they see me again? Will they thank me? I don’t know if that will ever happen. But wouldn’t that be nice?”

What is death?

Death has been redefined several times over the past century. It was once considered the cessation of a heartbeat and breathing. Today it includes other scenarios, such as the cessation of brain activity. But even that’s not good enough for some.

“Death is a process, not a switch,” says Max More, president and CEO of the Alcor Life Extension Foundation in Scottsdale, Arizona. “If you go back 100 years and someone falls over in the street and stops breathing, doctors would say ‘this person is dead’. Today we can do CPR and defibrillation to restart their heart and they can be brought back to life. So when that doctor declared them dead, were they? With today’s standards, no they weren’t.” Instead, says More, what we’re really saying is “given today’s technology and the medicine I have available to me right now, there’s nothing more I can do for you”.

A definition that emerged in the 1990s in response to this problem is the information-theoretic definition of death. It states that a person is dead only when the structures that encode memory and personality are so disrupted that it is no longer possible in principle to restore them.

Therefore a person who is cryogenically frozen, with brain structures preserved in a state close to what they were before the pronouncement of clinical death, is not by this definition, actually dead. So if the people frozen at Alcor aren’t dead, what are they? “There’s no good word for what they are,” says More (see Interview “I want to put your death on ice so that you can live again“). “Some people say they are de-animated.”

This article appeared in print under the headline “The big freeze”

from Health – New Scientist http://ift.tt/293zXna

https://www.newscientist.com/article/mg23130800-200-the-big-freeze-welcome-to-the-cryogenic-revolution/

Why the World Is Better Than You Think in 10 Powerful Charts

November 14, 2016

looking_forward

By

When I published Abundance: The Future is Better Than You Think in February 2012, I included about 80 charts in the back of the book showing very strong evidence that the world is getting better.

Over the last five years, this trend has continued and accelerated.

This blog includes additional “Evidence for Abundance” that you can share with friends and family to change their mindset.

We truly are living in the most exciting time to be alive.

By the way, if you have additional ‘Evidence for Abundance’ (charts, data, etc.) that you’ve encountered, please email them to me at data@diamandis.com.

Why This Is Important

Before I share the new “data” with you, it’s essential that you understand why this matters.

We live in a world where we are constantly bombarded by negative news from every angle. If you turn on CNN (what I call the Crisis News Network), you’ll predominantly hear about death, terrorism, airplane crashes, bombings, financial crisis and political scandal.

I think of the news as a drug pusher, and negative news as their drug.

There’s a reason for this.

We humans are wired to pay 10x more attention to negative news than positive news.

Being able to rapidly notice and pay attention to negative news (like a predator or a dangerous fire) was an evolutionary advantage to keep you alive on the savannas of Africa millions of years ago.

Today, we still pay more attention to negative news, and the news media knows this. They take advantage of it to drive our eyeballs to their advertisers. Typically, good news networks fail as businesses.

It’s not that the news media is lying — it’s just not a balanced view of what’s going on in the world.

And because your mindset matters a lot, my purpose of my work and this post is to share with you the data supporting the positive side of the equation and to give you insight to some fundamental truths about where humanity really is going…

The truth is, driven by advances in exponential technologies, things are getting much better around the world at an accelerating rate.

NOTE: This is not to say that there aren’t major issues we still face, like climate crisis, religious radicalism, terrorism, and so on. It’s just that we forget and romanticize the world in centuries past — and life back then was short and brutal.

My personal mission, and that of XPRIZE and Singularity University, is to help build a “bridge to abundance”: a world in which we are able to meet the basic needs of every man, woman and child.

So, now, let’s look at 10 new charts.

More Evidence for Abundance

Below are 10 powerful charts illustrating the positive developments we’ve made in recent years.

1. Living in Absolute Poverty (1981-2011)

Declining rates of absolute poverty (Source: Our World in Data, Max Roser)

Declining rates of absolute poverty (Source: Our World in Data, Max Roser)

Absolute poverty is defined as living on less than $1.25/day. Over the last 30 years, the share of the global population living in absolute poverty has declined from 53% to under 17%.

While there is still room for improvement (especially in sub-Saharan Africa and South Asia), the quality of life in every region above has been steadily improving and will continue to do so. Over the next 20 years, we have the ability to extinguish absolute poverty on Earth.

2. Child Labor Is on the Decline (2000-2020)

Child Labor on the decline (Source: International Labor Organization)

Child Labor on the decline (Source: International Labor Organization)

This chart depicts the actual and projected changes in the number of children (in millions) in hazardous work conditions and performing child labor between 2000 and 2020.

As you can see, in the last 16 years, the number of children in these conditions has been reduced by more than 50%. As we head to a world of low-cost robotics, where such machines can operate far faster, far cheaper and around the clock, the basic rationale for child labor will completely disappear, and it will drop to zero.

3. Income Spent on Food

Income spent on food (Source: USDA, Economic Research Service, Food Expenditure Series)

Income spent on food (Source: USDA, Economic Research Service, Food Expenditure Series)

This chart shows the percent per capita of disposable income spent on food in the U.S. from 1960 to 2012.

If you focus on the blue line, ‘Food at home,’ you can see that over the last 50 years, the percent of our disposable income spent on food has dropped by more than 50 percent, from 14% to less than 6%.

This is largely a function of better food production technology, distribution processes and policies that have reduced the cost of food. We’re demonetizing food rapidly.

4. Infant Mortality Rates

Infant Mortality Rate (Source: Devpolicy, UN Interagency Group for Child Mortality Est. 2013)

Infant Mortality Rate (Source: Devpolicy, UN Interagency Group for Child Mortality Est. 2013)

This chart depicts global under-five-years-old mortality rates between 1990 and 2012 based on the number of deaths per 1,000 live births.

In the last 25 years, under-five mortality rates have dropped by 50%. Infant mortality rates and neonatal mortality rates have also dropped significantly.

And this is just in the last 25 years. If you looked at the last 100 years, which I talk about in Abundance, the improvements have been staggering.

5. Annual Cases of Guinea Worm

Guinea worm cases (Source: GiveWell, Carter Center)

Guinea worm cases (Source: GiveWell, Carter Center)

Guinea worm is a nasty parasite that used to affect over 3.5 million people only 30 years ago. Today, thanks to advances in medical technologies, research and therapeutics, the parasite has almost been eradicated. In 2008, there were just 4,647 cases.

I’m sharing the chart above because it represents humanity’s growing ability to address and cure diseases that have plagued us for ages. Expect that through technologies such as gene drive/CRISPR-Cas9 and other genomic technologies, we will rapidly begin to eliminate dozens or hundreds of similar plagues.

6. Teen Birth Rates in the United States

Teen birth rates (Source: Vox, Centers for Disease Control)

Teen birth rates (Source: Vox, Centers for Disease Control)

The chart above shows the dramatic decline in the number of teen (15 to 19 years old) birth rates in the United States since 1950. At its peak, 89.1 out of 1,000 teenage women were giving birth. Today, it’s dropped under 29 out of 1,000.

This is largely a function of the population becoming better educated, the cost of birth control being reduced and becoming more widely available, and cultural shifts in the United States.

7. Homicide Rates in Western Europe

Homicide rates in Europe (Source: Our World in Data, Max Roser & Manuel Eisner)

Homicide rates in Europe (Source: Our World in Data, Max Roser & Manuel Eisner)

The chart above shows the number of homicides per 100,000 people per year in five Western European regions from 1300 to 2010.

As you can see, Western Europe used to be a very dangerous place to live. Over the last 700+ years, the number of homicides per 100,000 people has decreased to almost zero.

It is important to look back this far (700 years) because we humans lose perspective and tend to romanticize the past, but forget how violent life truly was in, say, the Middle Ages, or even just a couple of hundred years ago.

We have made dramatic and positive changes. On an evolutionary time scale, 700 years is NOTHING, and our progress as a species is impressive.

8. U.S. Violent Crime Rates, 1973 – 2010

U.S. violent crime rates (Source: Gallup, Bureau of Justice Statistics)

U.S. violent crime rates (Source: Gallup, Bureau of Justice Statistics)

In light of the recent terrorist shooting in Orlando, and the school shootings in years past, it is sometimes easy to lose perspective.

The truth is, in aggregate, we’ve made significant progress in reducing violent crimes in the United States in the last 50 years.

As recent as the early 80s and mid-90s, there were over 50 violent crime victims per 1,000 individuals. Recently, this number has dropped threefold to 15 victims per 1,000 people.

We continue to make our country (and the world) a safer place to live.

9. Average Years of Education, 1820-2003

Average years of education (Source: Our World in Data, Max Roser)

Average years of education (Source: Our World in Data, Max Roser)

I love this chart. In the last 200 years, the average number of ‘years of education’ received by people worldwide has increased dramatically.

In the U.S. in 1820, the average person received less than 2 years of education. These days, it’s closer to 21 years of education, a 10X improvement.

We are rapidly continuing the demonetization, dematerialization and democratization of education. Today, I’m very proud of the $15 million Global Learning XPRIZE as a major step in that direction.

Within the next 20 years, the best possible education on Earth will be delivered by AI for free — and the quality will be the same for the son or daughter of a billionaire as it is for the son or daughter of the poorest parents on the planet.

10. Global Literacy Rates

Global literacy rates (Source: Our World in Data, Max Roser)

Global literacy rates (Source: Our World in Data, Max Roser)

Along those same lines, the extraordinary chart above shows how global literacy rates have increased from around 10% to close to 100% in the last 500 years.

This is both a function of technology democratizing access to education, as well as abundance giving us the freedom of time to learn.

Education and literacy is a core to my abundance thesis — a better-educated world raises all tides.

Again, if you have other great examples of abundance (charts and data), please send them to me at data@diamandis.com.

We live in the most exciting time to be alive! Enjoy it.

Why the World Is Better Than You Think in 10 Powerful Charts

Tiny Flying Robots Are Being Built To Pollinate Crops Instead Of Real Bees

November 14, 2016

1682095-inline-robobee-zoom

Honeybees, which pollinate nearly one-third of the food we eat , have been dying at unprecedented rates because of a mysterious phenomenon known as  colony collapse disorder  (CCD). The situation is so dire that in late June the White House gave a  new task force just 180 days to devise a coping strategy to protect bees and other pollinators. The crisis is generally attributed to a mixture of disease, parasites, and pesticides.

Other scientists are pursuing a different tack: replacing bees. While there’s no perfect solution, modern technology offers hope.

Last year, Harvard University researchers led by engineering professor Robert Wood introduced the first RoboBees, bee-size robots with the ability to lift off the ground and hover midair when tethered to a power supply. The details were published in the journal Science. A coauthor of that report, Harvard graduate student and mechanical engineer Kevin Ma, tells Business Insider that the team is “on the eve of the next big development.” Says Ma: “The robot can now carry more weight.”

The project represents a breakthrough in the field of micro-aerial vehicles. It had previously been impossible to pack all the things needed to make a robot fly onto such a small structure and keep it lightweight.

A Bee-Placement?

The researchers believe that as soon as 10 years from now these RoboBees could artificially pollinate a field of crops, a critical development if the commercial pollination industry cannot recover from severe yearly losses over the past decade.

The White House underscored what’s at stake, noting that the loss of bees and other species “requires immediate attention to ensure the sustainability of our food production systems, avoid additional economic impact on the agricultural sector, and protect the health of the environment.” Honeybees alone contribute more than $15 billion in value to U.S. agricultural crops each year.

But RoboBees are not yet a viable technological solution. First, the tiny bots have to be able to fly on their own and “talk” to one another to carry out tasks like a real honeybee hive.

“RoboBees will work best when employed as swarms of thousands of individuals, coordinating their actions without relying on a single leader,” Wood and colleagues wrote in an article for Scientific American. “The hive must be resilient enough so that the group can complete its objectives even if many bees fail.”

Although Wood wrote that CCD and the threat it poses to agriculture were part of the original inspiration for creating a robotic bee, the devices aren’t meant to replace natural pollinators forever. We still need to focus on efforts to save these vital creatures. RoboBees would serve as “stopgap measure while a solution to CCD is implemented,” the project’s website says.

Harvard’s Kevin Ma spoke to Business Insider about the team’s progress in building the bee-size robot since publishing its Science paper last year.

Following is an edited version of that interview.

Business Insider: Where are you a little over a year after it was announced that the first robotic insect took flight?

Kevin Ma: We’ve been continuing on the path to getting the robot to be completely autonomous, meaning it flies without being tethered and without the need for anyone to drive it. We’ve been building a larger version of the robot so that it can can carry the battery, electronic centers, and all the other things necessary for autonomous flight.

BI: Last month, Greenpeace released a short video that imagines a future in which swarms of robotic bees have been deployed to save our planet after the real insects go extinct. It’s a cautionary story rather than one of technological adaptation. What is your reaction to that?

KM: Having a multitude of options to deal with future problems is important. It’s hard to predict what exact solution we would need in the future. Flexibility is key.

BI: Will robot bees eventually be able to operate like honeybee hives to pollinate commercial crops?

KM: Yes. You could replace a hive of honeybees that would otherwise be working on a field of flowers. They would be able to perform the same task of going from flower to flower picking up and putting down pollen. They wouldn’t have to collect nectar like real bees. They would just be transmitting pollen. But to do this the robots first need to fly on their own and fly very well. In theory, they would just have to come back to something to recharge their batteries. But we’re very early on in working this out.

BI: When can we see RoboBees pollinating flowers?

KM: With continued government funding and research we could see this thing functional in 10 to 15 years.

BI: What’s next?

KM:We’re on the eve of the next big development. Something will be published in the next few months. The robot can now now carry more weight. That’s important for the battery and other electronics and sensors.

Once the robot can stay aloft on its own, we would be working on things like allowing it to perform tasks, increasing its battery life, and making it fly faster. Then there are a whole host of issues to work out dealing with wireless communications.

http://www.businessinsider.com/harvard-robobees-closer-to-pollinating-crops-2014-6

Self-powered ‘materials that compute’ and recognize simple patterns

September 24, 2016

hybrid-gel-oscillator-system-animation

University of Pittsburgh researchers have modeled the design of a “material that computes” — a hybrid material, powered only by its own chemical reactions, that can recognize simple patterns.

The material could one day be integrated into clothing and used to monitor the human body, or developed as a skin for “squishy” robots, for example, according to the researchers, writing in the open-access AAAS journal Science Advances.

A computer that combines gels and piezeoelectric materials

The computations (needed to design the hypothetical material) were modeled utilizing Belousov-Zhabotinsky (BZ) gels, a substance that oscillates in the absence of external stimuli, combined with an overlaying piezoelectric (PZ) cantilever, forming “BZ-PZ” (as in “easy peasy”). The BZ gels oscillate periodically, triggered by chemical stimulation, without the need for external driving stimuli. Piezoelectric (PZ) materials generate a voltage when deformed and, conversely, undergo deformation in the presence of an applied voltage.

Two BZ-PZ oscillator units connected with electrical wires. Triggered by the chemical oscillations, the BZ gels (green) expand in volume, generating a force (F1 and F2) and thereby cause the deflections ξ1 and ξ2 of the PZ cantilevers (orange and blue layers) , which generate an electric voltage U. That voltage then deflects the cantilevers (the inverse PZ effect), which then compress the underlying BZ gels and thereby modify the chemomechanical oscillations in these gels. The end result is the components’ response to self-generated signals (sensing), volumetric changes in the gel (actuation), and the passage of signals between the units (communication). For computation, the communication also leads to synchronization of the BZ gel oscillators. (credit: Yan Fang et al./Science Advances)

“By combining these attributes into a ‘BZ-PZ’ unit and then connecting the units by electrical wires, we designed a device that senses, actuates, and communicates without an external electrical power source,” the researchers explain in the paper.*

The result is that the device can also be used to perform computation. To use that for pattern recognition, the researchers first stored a pattern of numbers as a set of polarities in the BZ-PZ units, and the input patterns were coded with the initial phase of the oscillations imposed on these units.

Multiple BZ-PS units wired in serial and parallel configurations to form a network (credit: Yan Fang et al./Science Advances)

With multiple BZ-PZ units, the oscillators can be wired into a network  formed, for example, from units that are connected in parallel or in series. The resulting transduction between chemomechanical and electrical energy creates signals that quickly propagate and thus permits remote coupled oscillators to communicate and synchronize. This synchronization behavior in BZ-PZ network can be used for oscillator-based computing.

The computational modeling revealed that the input pattern closest to the stored pattern exhibits the fastest convergence time to the stable synchronization behavior, and is the most effective at recognizing patterns. In this study, the materials were programmed to recognize black-and-white pixels in the shape of numbers that had been distorted.

The researchers’ next goal is to expand from analyzing black-and-white pixels to grayscale and more complicated images and shapes, as well as to enhance the devices storage capability.

Perfect for monitoring human and robot bodies

Compared to a traditional computer, these computations are slow and take minutes. “Individual events are slow because the period of the BZ oscillations is slow,” said Victor V. Yashin, Research Assistant Professor of Chemical and Petroleum Engineering. “However, there are some tasks that need a longer analysis, and are more natural in function. That’s why this type of system is perfect to monitor environments like the human body.”

For example, Dr. Yashin said that patients recovering from a hand injury could wear a glove that monitors movement, and can inform doctors whether the hand is healing properly or if the patient has improved mobility. Another use would be to monitor individuals at risk for early onset Alzheimer’s, by wearing footwear that would analyze gait and compare results against normal movements, or a garment that monitors cardiovascular activity for people at risk of heart disease or stroke.

Since the devices convert chemical reactions to electrical energy, there would be no need for external electrical power. This would also be ideal for a robot or other device that could utilize the material as a sensory skin.

The research is funded by a five-year National Science Foundation Integrated NSF Support Promoting Interdisciplinary Research and Education (INSPIRE) grant, which focuses on complex and pressing scientific problems that lie at the intersection of traditional disciplines.

“This work at the University of Pittsburgh … is an example of this groundbreaking shift away from traditional silicon CMOS-based digital computing to a non-von Neumann machine in a polymer substrate, with remarkable low power consumption,” said Sankar Basu, NSF program director.

* This continues the research of Anna C. Balazs, Distinguished Professor of Chemical and Petroleum Engineering, and Steven P. Levitan, the John A. Jurenko Professor of Electrical and Computer Engineering. 


Abstract of Pattern recognition with “materials that compute”

Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The “stored” patterns are set of polarities of the individual BZ-PZ units, and the “input” patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating “materials that compute.”