10 Things Children Born in 2018 Will Probably Never Experience

February 01, 2018

It’s All Coming Back to Me Now

2017 was a year filled with nostalgia thanks to a number of pop culture properties with ties to the past.

We got another official Alien film, and Blade Runner came back with new visuals to dazzle us. Meanwhile, “Stranger Things” hearkened back to the Spielbergian fantasy that wowed so many children of the ’80s, and “Twin Peaks” revived Agent Cooper so he could unravel yet another impenetrable mystery from the enigmatic mind of David Lynch.

As these films and TV shows remind us, a lot can change over the course of a few decades, and the experiences of one generation can be far different from those that follow closely behind thanks to advances in technology.

Click to View Full Infographic

While the “Stranger Things” kids’ phone usage reminded 30-somethings of their own pre-mobile adolescences, children born in 2018 will probably never know the feeling of being tethered to a landline. A trip to the local megaplex to catch Blade Runner 2049 may have stirred up adults’ memories of seeing the original, but children born this year may never know what it’s like to watch a film on a smaller screen with a sound system that doesn’t rattle the brain.

Technology is currently advancing faster than ever before, so what else will kids born today only read about in books or, more likely, on computer screens? Here’s a list of the top 10 things that children born in 2018 will likely never experience.

Long, Boring Travel

Mobile devices and in-flight entertainment systems have made it pretty easy to stay distracted during the course of a long trip. However, aside from the Concorde, which was decommissioned in 2003, humanity hasn’t done nearly as much to increase the speed of air travel for international jet-setters. Beyond sparsely utilized bullet trains, even the speed of our ground transportation has remained fairly limited.

However, recent developments in transportation will likely speed up the travel process, meaning today’s kids may never know the pain of seemingly endless flights and road trips.

Supersonic planes are making a comeback and could ferry passengers “across the pond” in as few as 3.5 hours. While these aircraft could certainly make travel faster for a small subset of travelers, physical and cost limitations will likely prevent them from reaching the mainstream.

However, hyperloop technology could certainly prove to be an affordable way for travelers to subtract travel time from their itineraries.

Already, these super-fast systems have the ability to travel at speeds up to 387 kmh (240 mph). If proposed routes come to fruition, they could significantly cut the time of travel between major cities. For example, a trip from New York to Washington D.C. could take just 30 minutes as opposed to the current five hours.

Driver’s Licenses

Obtaining a driver’s license is currently a rite of passage for teenagers as they make that transition from the end of childhood to the beginning of adulthood. By the time today’s newborns are 16, self-driving cars may have already put an end to this unofficial ritual by completely removing the need for human operators of motor vehicles.

According to the Centers for Disease Control (CDC), an average of six teens between the ages of 16 and 19 died every day in 2015 from injuries sustained in motor vehicle collisions. Since a vast majority of accidents are caused by human error, removing the human from the equation could help to save the lives of people of all ages, so autonomous cars are a serious priority for many.

Elon Musk, CEO of Tesla, is confident that his electric and (currently) semi-autonomous car manufacturing company will produce fully autonomous vehicles within the next two years, and several ride-hailing services are already testing self-driving vehicles.

Biology’s Monopoly on Intelligence

Self-driving cars are just a single example of innovations made possible by the advancement of artificial intelligence (AI).

Today, we have AI systems that rival or even surpass human experts at specific tasks, such as playing chess or sorting recyclables. However, experts predict that conscious AI systems that rival human intelligence could just be decades away.

Advanced robots like Hanson Robotics’ Sophia are already blurring the line between humanity and machines. The next few decades will continue to push boundaries as we inch closer and closer to the singularity.

Children born in 2018 may never know what it’s like to join the workforce or go to college at a time when humans are the smartest entities on the planet.

Language Barriers

Another promising use for AI is communication, and eventually, technology could end the language barrier on Earth.

Communication tools such as Skype have already incorporated instantaneous translating capabilities that allow speakers of a few languages to freely converse in real-time, and Google has incorporated translating capabilities into their new headphones.

Other companies, such as Waverly Labs, are also working on perfecting the technology that will eventually rival the ability of the Babel fish, an alien species found in the book “The Hitchhiker’s Guide to the Galaxy” that can instantly translate alien languages for its host.

Children born in 2018 may find themselves growing up in a world in which anyone can talk to anyone, and the idea of a “foreign” language will seem, well, completely foreign.

Humanity as a Single-Planet Species

Technology that improves human communication could radically impact our world, but eventually, we may need to find a way to communicate with extraterrestrial species. Granted, the worlds we reach in the lifetimes of anyone born this year aren’t likely to contain intelligent life, but the first milestones on the path to such a future are likely to be reached in the next few decades.

When he’s not ushering in the future of autonomous transportation, Musk is pushing his space exploration company SpaceX to develop the technology to put humans on Mars. He thinks he’ll be able to get a crew to the Red Planet by 2024, so today’s children may have no memory of a time before humanity’s cosmic footprint extended beyond a single planet.

Quiet Spaces

Overpopulation is one of the factors that experts point to when they discuss the need for humanity to spread into the cosmos. Urban sprawl has been an issue on Earth for decades, bringing about continued deforestation and the elimination of farming space.

A less-discussed problem caused by the continuous spread of urbanization, however, is the increase in noise pollution.

Experts are concerned that noise is quickly becoming the next great public health crisis. Data collected by the United Nations estimates that by 2100, 84 percent of the world’s 10.8 billion citizens will live in cities, surrounded by a smorgasbord of sound.

This decline in the number of people who live in areas largely free from noise pollution means many of the babies born today will never know what it’s like to enjoy the sound of silence.

World Hunger

Urbanization may limit the space available for traditional farming, but thanks to innovations in agriculture, food shortages may soon become a relic of the past.

Urban farming is quickly developing into a major industry that is bringing fresh produce and even fish to many markets previously considered food deserts (areas cut off from access to fresh, unprocessed foods).

Vertical farming will bring greater access to underserved areas, making it more possible than ever to end hunger in urban areas. Meanwhile, companies are developing innovative ways to reduce food waste, such as by transforming food scraps into sweets or using coffee grounds to grow mushrooms.

If these innovations take hold, children born in 2018 could grow up in a world in which every person on Earth has access to all the food they need to live a healthy, happy life.

Paper Currency

The advent of credit cards may have been the first major blow to the utilization of cash, but it wasn’t the last. Today, paper currency must contend with PayPal, Venmo, Apple Pay, and a slew of other payment options.

By the time children born in 2018 are old enough to earn a paycheck, they will have access to even more payment options, and cash could be completely phased out.

In the race to dethrone paper currency, cryptocurrencies are a frontrunner. Blockchain technology is adding much needed security to financial transactions, and while the crypto market is currently volatile, experts are still optimistic about its potential to permanently disrupt finance.

Digital Insecurity

Today, digital security is a major subject of concern. Hacking can occur on an international level, and with the growth of the Internet of Things (IoT), even household appliances can be points of weakness in the defenses guarding sensitive personal information.

Experts are feverishly trying to keep security development on pace with the ubiquity of digitalization, and technological advances such as biometrics and RFID tech are helping. Unfortunately, these defenses still rely largely on typical encryption software, which is breakable.

The advent of the quantum computer will exponentially increase computing power, and better security systems will follow suit. By the time children born in 2018 reach adulthood, high-speed quantum encryption could ensure that the digital world they navigate is virtually unhackable.

Single-Screen Computing

While most of our digital devices currently make use of a typical flat screen, tomorrow’s user interfaces will be far more dynamic, and children born in 2018 may not remember a time when they were limited to a single screen and a keyboard.

The development of virtual reality (VR) and augmented reality (AR) have shifted the paradigm, and as these technologies continue to advance, we will increasingly see the incorporation of new capabilities into our computing experience.

Gesture recognition, language processing, and other technologies will allow for a more holistic interaction with our devices, and eventually, we may find ourselves interacting with systems akin to what we saw in Minority Report.

Advertisements

Here’s Everything You Need to Know about Elon Musk’s Human/AI Brain Merge

January 05, 2018

Neuralink Has Arrived

After weeks of anticipation, details on Elon Musk’s brain-computer interface company Neuralink have finally been revealed. In a detailed report on the website Wait But Why, Tim Urban recounts insights gleaned from his weeks meeting with Musk and his Neuralink team at their San Francisco headquarters. He offers an incredibly detailed and informative overview of both Musk’s latest venture and its place in humanity’s evolution, but for those of you interested in just the big picture, here’s what you really need to know about Neuralink.

Your Brain Will Get Another “Layer”

Right now, you have two primary “layers” to your brain: the limbic system, which controls things like your emotions, long-term memory, and behavior; and the cortex, which handles your complex thoughts, reasoning, and long-term planning. Musk wants his brain interface to be a third layer that will complement the other two. The weirdest thing about that goal may be that he thinks we actually already have this third layer — we just don’t have the best interface for it:

We already have a digital tertiary layer in a sense, in that you have your computer or your phone or your applications…The thing that people, I think, don’t appreciate right now is that they are already a cyborg…If you leave your phone behind, it’s like missing limb syndrome. I think people—they’re already kind of merged with their phone and their laptop and their applications and everything.

The goal of Neuralink, then, is eliminating the middleman and putting that power we currently have at our fingertips directly into our brains. Instead of one person using their phone to transmit a thought to another person (“Dinner at 8?”), the thought would just go from one brain to the other directly.

Thankfully, we’ll be able to control this completely, Musk tells Urban: “People won’t be able to read your thoughts — you would have to will it. If you don’t will it, it doesn’t happen. Just like if you don’t will your mouth to talk, it doesn’t talk.”

Musk Is Working with Some Very Smart People

Musk met with more than 1,000 people before deciding on the eight who would help him shape the future of humanity at Neuralink. He claims assembling the right team was a challenge in and of itself, as he needed to find people capable of working in a cross-disciplinary field that includes everything from brain surgery to microscopic electronics.

The crew he landed is a veritable supergroup of smarties. They have backgrounds from MIT, Duke, and IBM, and their bios include phrases like “neural dust,” “cortical physiology,” and “human psychophysics.” They’re engineers, neurosurgeons, and chip designers, and if anyone can bring Elon Musk’s vision to life, it’s them.

The Timeline For Adoption Is Hazy…

Neuralink won’t come out the gate with a BMI that transforms you into a walking computer. The first product the company will focus on releasing will be much more targeted. “We are aiming to bring something to market that helps with certain severe brain injuries (stroke, cancer lesion, congenital) in about four years,” said Musk.

I think we are about 8 to 10 years away from this being usable by people with no disability.” – Musk

The same way SpaceX was able to fund its research on reusable rockets by making deliveries to the ISS or Tesla was able to use profits from its early car sales to fund battery research, these earliest BMIs to treat diseases or the disabled will keep Neuralink afloat as it works on its truly mind-bending technologies.

As for when those technologies, the ones that allow healthy people to channel their inner telepaths, will arrive, Musk’s fairly optimistic timeline comes with several contingencies: “I think we are about 8 to 10 years away from this being usable by people with no disability…It is important to note that this depends heavily on regulatory approval timing and how well our devices work on people with disabilities.”

…Because The Hurdles are Many

Those are just two of the hurdles Neuralink faces. Elon Musk might make innovation look easy, but even going to Mars seems relatively straightforward in comparison to his plans for his latest company.

First, there are the engineering hurdles to overcome. The company has to deal with the problems of biocompatibility, wirelessness, power, and — the big one — bandwidth. To date, we’ve never put more than roughly 200 electrodes in a person’s brain at one time. When talking about a world-changing interface, the Neuralink team told Urban they were thinking something like “one million simultaneously recorded neurons.” Not only would they need to find a way to ensure that the brain could effectively communicate with that many electrodes, they also need to overcome the very practical problem of where to physically put them.

The engineering is only half the battle, though. Like Musk mentioned, regulatory approval will be a big factor in the development and adoption of Neuralink’s tech. The company also faces potential skepticism and even fear from a public that doesn’t want anyone cutting into their brains to install some high-tech machinery — according to a recent Pew survey, the public is even more worried about brain computer interfaces than gene editing. There’s also the not-entirely-unfounded fear that these computers could be hacked.

Add to all that our still very, very incomplete understanding of how the brain ticks exactly, and you can see that the Neuralink team has its work cut out for them.

Neuralink Won’t Exist in a Vacuum

Thankfully, they won’t be working to remake our minds alone — many other universities and research institutes are pushing brain interface technology forward. Facebook’s Building 8 is working on its own BCI, MIT is creating super-thin wires for use in brain implants, and other cyborg devices are already in the works to help the paralyzed walk again and the blind regain their sight. Each new development will push the field forward, and the team at Neuralink will be able to learn from the mistakes and successes of others in the field.

Just like other electric cars were on the road before Tesla came along, brain computer interfaces are not new — the tech might just need a visionary like Musk to elevate it (and us) to the next level.

This article was originally published by:
https://futurism.com/heres-everything-you-need-to-know-about-elon-musks-humanai-brain-merge/

There’s a major long-term trend in the economy that isn’t getting enough attention

January 05, 2018

As the December Federal Reserve (Fed) meeting nears, discussions and speculation about the precise timing of Fed liftoff are certain to take center stage.

But while I’ve certainly weighed in on this debate many times, I believe it’s just one example of a topic that receives far too much attention from investors and market watchers alike.

The Fed has been abundantly clear that the forthcoming rate hiking cycle, likely to begin this month, will be incredibly gradual and sensitive to how economic data evolves, meaning the central bank is likely to be extraordinarily cautious about derailing the recovery and rates will likely remain historically low for an extended period of time. In other words, when the Fed does begin rate normalization, not much is likely to change.

Shifting the Focus to Other Economic Trends

In contrast, there are a number of important longer-term trends more worthy of our focus, as they’re likely to have a bigger, longer-sustaining impact on markets than the Fed’s first rate move. One such market influence that I believe should be getting more attention: The advances in technology happening all around us; innovations already having a huge disruptive influence on the economy and markets. These three charts help explain why.

1. ADOPTION OF TECHNOLOGY IN THE U.S., 1900 TO PRESENT

1. ADOPTION OF TECHNOLOGY IN THE U.S., 1900 TO PRESENT

.

As the chart above shows, people in the U.S. today are adopting new technologies, including tablets and smartphones, at the swiftest pace we’ve seen since the advent of the television. However, while television arguably detracted from U.S. productivity, today’s advances in technology are generally geared toward greater efficiency at lower costs. Indeed, when you take into account technology’s downward influence on price, U.S. consumption and productivity figures look much better than headline numbers would suggest.

2. PERCENTAGE TOP 1500 U.S. STOCKS WITH ZERO INVENTORY THROUGH Q2 2015

2. PERCENTAGE TOP 1500 U.S. STOCKS WITH ZERO INVENTORY THROUGH Q2 2015

.

Technology isn’t just transforming the consumer story. It’s having a similarly dramatic influence on industry, resulting in efficiency gains not reflected in traditional productivity measurements.

For instance, based on corporate capital expenditure data accessible via Bloomberg, it’s clear that U.S. investment is generally accelerating. However, the cost of that investment is going down, allowing companies to become dramatically more efficient in order to better compete. Similarly, with the help of new technologies, many corporations have refined inventory management practices, or have adopted business models that are purposefully asset-light, causing average inventory levels to decline over the past few decades. As the chart above shows, among the top 1500 U.S. stocks by market capitalization over the past 35 years, the percentage of companies reporting effectively zero inventory levels has increased to more than 20 percent from fewer than 5 percent, an extraordinary four-fold rise.

Above all, if there’s one common theme in all three of these charts, it’s this: Technology is advancing so fast that traditional economic metrics haven’t kept up. This has serious implications. It helps to explain widespread misconceptions about the state of the U.S. economy, including the assertion that we reside in a period of low productivity growth, despite the many remarkable advances we see around us. It also makes monetary policy evolution more difficult, and is one reason why I’ve found recent policy debates somewhat myopic and distorted from reality.

So, let’s all make this New Year’s resolution: Instead of focusing so much on the Fed, let’s give some attention to how technology is changing the entire world in ways never before witnessed, and let’s focus on education and training policies that can help our workforce adapt. Such initiatives are more important and durable, and should havefewer unintended negative economic consequences, than policies designed to distort the real rates of interest.

This article was originally published by: http://www.businessinsider.com/blackrock-topic-we-should-be-paying-attention-charts-2015-12/#3-highly-skilled-labor-versus-lower-skilled-labor-trends-2000-2015-3

Bionic Contacts: Goodbye Glasses. Hello Vision That’s 3x Better Than 20/20

October 18, 2017

A Clear Problem

Most of us take our vision for granted. As a result, we take the ability to read, write, drive, and complete a multitude of other tasks for granted. However, unfortunately, sight is not so easy for everyone.

For many people, simply seeing is a struggle. In fact, more than 285 million people worldwide have vision problems, according to the World Health Organization (WHO).

Cataracts account for about a third of these. The National Eye Institute reports that more than half of all Americans will have cataracts or will have had cataract surgery by the time they are 80, and in low- and middle-income countries, they’re the leading cause of blindness.

But now, people with vision problems may have new hope.

A Welcome Sight

Soon, cataracts may be the thing of the past, and even better, it may be possible to see a staggering three times better than 20/20 vision. Oh, and you could do it all without wearing glasses or contacts.

So what exactly does having three times better vision mean? If you can currently read a text that is 10 feet away, you would be able to read the same text from 30 feet away. What’s more, people who currently can’t see properly might be able to see a lot better than the average person.

This development comes thanks to the Ocumetics Bionic Lens. This dynamic lens essentially replaces a person’s natural eye lens. It’s placed into the eye via a saline-filled syringe, after which it unravels itself in under 10 seconds.

 

It may sound painful, but Dr. Garth Webb, the optometrist who invented the Ocumetics Bionic Lens, says that the procedure is identical to cataract surgery and would take just about eight minutes. He adds that people who have the specialized lenses surgically inserted would never get cataracts and that the lenses feel natural and won’t cause headaches or eyestrain.

The Bionic Lens may sound like a fairy tale (or sci-fi dream), but it’s not. It is actually the end result of years and years of research and more than a little funding — so far, the lens has taken nearly a decade to develop and has cost US$3 million.

There is still some ways to go before you will be able to buy them, but if the timeline Webb offered in an interview with Eye Design Optometry holds up, human studies will begin in July 2017, and the bionic lenses will be available to the public in March 2018.

Original source: https://futurism.com/bionic-contacts-goodbye-glasses-hello-vision-thats-3x-better-than-2020/

Is our world a simulation? Why some scientists say it’s more likely than not

October 18, 2017

When Elon Musk isn’t outlining plans to use his massive rocket to leave a decaying Planet Earth and colonize Mars, he sometimes talks about his belief that Earth isn’t even real and we probably live in a computer simulation.

“There’s a billion to one chance we’re living in base reality,” he said at a conference in June.

Musk is just one of the people in Silicon Valley to take a keen interest in the “simulation hypothesis”, which argues that what we experience as reality is actually a giant computer simulation created by a more sophisticated intelligence. If it sounds a lot like The Matrix, that’s because it is.

According to this week’s New Yorker profile of Y Combinator venture capitalist Sam Altman, there are two tech billionaires secretly engaging scientists to work on breaking us out of the simulation. But what does this mean? And what evidence is there that we are, in fact, living in The Matrix?

One popular argument for the simulation hypothesis, outside of acid trips, came from Oxford University’s Nick Bostrom in 2003 (although the idea dates back as far as the 17th-century philosopher René Descartes). In a paper titled “Are You Living In a Simulation?”, Bostrom suggested that members of an advanced “posthuman” civilization with vast computing power might choose to run simulations of their ancestors in the universe.

This argument is extrapolated from observing current trends in technology, including the rise of virtual reality and efforts to map the human brain.

If we believe that there is nothing supernatural about what causes consciousness and it’s merely the product of a very complex architecture in the human brain, we’ll be able to reproduce it. “Soon there will be nothing technical standing in the way to making machines that have their own consciousness,” said Rich Terrile, a scientist at Nasa’s Jet Propulsion Laboratory.

At the same time, videogames are becoming more and more sophisticated and in the future we’ll be able to have simulations of conscious entities inside them.

Elon Musk on simulation: ‘The odds we’re in base reality is one in billions’

“Forty years ago we had Pong – two rectangles and a dot. That’s where we were. Now 40 years later, we have photorealistic, 3D simulations with millions of people playing simultaneously and it’s getting better every year. And soon we’ll have virtual reality, we’ll have augmented reality,” said Musk. “If you assume any rate of improvement at all, then the games will become indistinguishable from reality.”

It’s a view shared by Terrile. “If one progresses at the current rate of technology a few decades into the future, very quickly we will be a society where there are artificial entities living in simulations that are much more abundant than human beings.”

If there are many more simulated minds than organic ones, then the chances of us being among the real minds starts to look more and more unlikely. As Terrile puts it: “If in the future there are more digital people living in simulated environments than there are today, then what is to say we are not part of that already?”

Reasons to believe that the universe is a simulation include the fact that it behaves mathematically and is broken up into pieces (subatomic particles) like a pixelated video game. “Even things that we think of as continuous – time, energy, space, volume – all have a finite limit to their size. If that’s the case, then our universe is both computable and finite. Those properties allow the universe to be simulated,” Terrile said.

“Quite frankly, if we are not living in a simulation, it is an extraordinarily unlikely circumstance,” he added.

So who has created this simulation? “Our future selves,” said Terrile.

Not everyone is so convinced by the hypothesis. “Is it logically possible that we are in a simulation? Yes. Are we probably in a simulation? I would say no,” said Max Tegmark, a professor of physics at MIT.

“In order to make the argument in the first place, we need to know what the fundamental laws of physics are where the simulations are being made. And if we are in a simulation then we have no clue what the laws of physics are. What I teach at MIT would be the simulated laws of physics,” he said.

Harvard theoretical physicist Lisa Randall is even more skeptical. “I don’t see that there’s really an argument for it,” she said. “There’s no real evidence.”

“It’s also a lot of hubris to think we would be what ended up being simulated.”

Terrile believes that recognizing that we are probably living in a simulation is as game-changing as Copernicus realizing that the Earth was not the center of the universe. “It was such a profound idea that it wasn’t even thought of as an assumption,” he said.

Before Copernicus, scientists had tried to explain the peculiar behaviour of the planets’ motion with complex mathematical models. “When they dropped the assumption, everything else became much simpler to understand.”

That we might be in a simulation is, Terrile argues, a simpler explanation for our existence than the idea that we are the first generation to rise up from primordial ooze and evolve into molecules, biology and eventually intelligence and self-awareness. The simulation hypothesis also accounts for peculiarities in quantum mechanics, particularly the measurement problem, whereby things only become defined when they are observed.

“For decades it’s been a problem. Scientists have bent over backwards to eliminate the idea that we need a conscious observer. Maybe the real solution is you do need a conscious entity like a conscious player of a video game,” he said.

For Tegmark, this doesn’t make sense. “We have a lot of problems in physics and we can’t blame our failure to solve them on simulation.”

How can the hypothesis be put to the test? On one hand, neuroscientists and artificial intelligence researchers can check whether it’s possible to simulate the human mind. So far, machines have proven to be good at playing chess and Go and putting captions on images. But can a machine achieve consciousness? We don’t know.

On the other hand, scientists can look for hallmarks of simulation. “Suppose someone is simulating our universe – it would be very tempting to cut corners in ways that makes the simulation cheaper to run. You could look for evidence of that in an experiment,” said Tegmark.

For Terrile, the simulation hypothesis has “beautiful and profound” implications.

First, it provides a scientific basis for some kind of afterlife or larger domain of reality above our world. “You don’t need a miracle, faith or anything special to believe it. It comes naturally out of the laws of physics,” he said.

Second, it means we will soon have the same ability to create our own simulations.

“We will have the power of mind and matter to be able to create whatever we want and occupy those worlds.”

Original source: https://www.theguardian.com/technology/2016/oct/11/simulated-world-elon-musk-the-matrix#img-1

Video

“The Looking Planet” – by Eric Law Anderson

August 06, 2017

Enjoy this CGI 3D Animated Short Film and winner of over 50 film festival jury and audience awards including Best Short Film, Best Sci-Fi Film, Best Animated Film, Best Production Design, Best Visual Effects, and Best Sound Design. During the construction of the universe, a young member of the Cosmos Corps of Engineers decides to break some fundamental laws in the name of self-expression.

 

From flying warehouses to robot toilets – five technologies that could shape the future

August 06, 2017

Flying warehouses, robot receptionists, smart toilets… do such innovations sound like science fiction or part of a possible reality? Technology has been evolving at such a rapid pace that, in the near future, our world may well resemble that portrayed in futuristic movies, such as Blade Runner, with intelligent robots and technologies all around us.

But what technologies will actually make a difference? Based on recent advancements and current trends, here are five innovations that really could shape the future

1. Smart homes

Many typical household items can already connect to the internet and provide data. But much smart home technology isn’t currently that smart. A smart meter just lets people see how energy is being used, while a smart TV simply combines television with internet access. Similarly, smart lighting, remote door locks or smart heating controls allow for programming via a mobile device, simply moving the point of control from a wall panel to the palm of your hand.

But technology is rapidly moving towards a point where it can use the data and connectivity to act on the user’s behalf. To really make a difference, technology needs to fade more into the background – imagine a washing machine that recognises what clothes you have put into it, for example, and automatically selects the right programme, or even warns you that you have put in items that you don’t want to wash together. Here it is important to better understand people’s everyday activities, motivations and interactions with smart objects to avoid them becoming uninvited guests at home.

Such technologies could even work for the benefit of all. The BBC reports, for example, that energy providers will “reduce costs for someone who allows their washing machine to be turned on by the internet to maximise use of cheap solar power on a sunny afternoon” or “to have their freezers switched off for a few minutes to smooth demand at peak times”.

A major concern in this area is security. Internet-connected devices can and are being hacked – just recall the recent ransomware attack. Our home is, after all, the place where we should feel most secure. For them to become widespread, these technologies will have to keep it that way.

2. Virtual secretaries

While secretaries play a very crucial role in businesses, they often spend large parts of their working day with time-consuming but relatively trivial tasks that could be automated. Consider the organisation of a “simple” meeting – you have to find the right people to take part (likely across business boundaries) and then identify when they are all available. It’s no mean feat.

Tools such as doodle.com, which compare people’s availability to find the best meeting time, can help. But they ultimately rely on those involved actively participating. They also only become useful once the right people have already been identified.

By using context information (charts of organisations, location awareness from mobile devices and calendars), identifying the right people and the right time for a given event became a technical optimisation problem that was explored by the EU-funded inContext project a decade ago. At that stage, technology for gathering context information was far less advanced – smart phones were still an oddity and data mining and processing was not where it is today. Over the coming years, however, we could see machines doing far more of the day-to-day planning in businesses.

Indeed, the role of virtual assistants may go well beyond scheduling meetings and organising people’s diaries – they may help project managers to assemble the right team and allocate them to the right tasks, so that every job is conducted efficiently.

‘She is expecting you in the main boardroom …’ Shutterstock

On the downside, much of the required context information is relatively privacy-invasive – but then the younger generation is already happily sharing their every minute on Twitter and Snapchat and such concerns may become less significant over time. And where should we draw the line? Do we fully embrace the “rise of the machines” and automate as much as possible, or retain real people in their daily roles and only use robots to perform the really trivial tasks that no one wants to do? This question will need to be answered – and soon.

3. AI doctors

We are living in exciting times, with advancements in medicine and AI technology shaping the future of healthcare delivery around the world.

But how would you feel about receiving a diagnosis from an artificial intelligence? A private company called Babylon Health is already running a trial with five London boroughs which encourages consultations with a chatbot for non-emergency calls. The artificial intelligence was trained using massive amounts of patient data in order to advise users to go to the emergency department of a hospital, visit a pharmacy or stay at home.

The company claims that it will soon be able to develop a system that could potentially outperform doctors and nurses in making diagnoses. In countries where there is a shortage of medical staff, this could significantly improve health provision, enabling doctors to concentrate on providing treatment rather than spending too much time on making a diagnosis. This could significantly redefine their clinical role and work practices.

Elsewhere, IBM Watson, the CloudMedx platform and Deep Genomics technology can provide clinicians with insights into patients’ data and existing treatments, help them to make more informed decisions, and assist in developing new treatments.

An increasing number of mobile apps and self-tracking technologies, such as Fitbit, Jawbone Up and Withings, can now facilitate the collection of patients’ behaviours, treatment status and activities. It is not hard to imagine that even our toilets will soon become smarter and be used to examine people’s urine and faeces, providing real-time risk assessment for certain diseases.

Your robodoctor will see you now. Shutterstock

Nevertheless, to enable the widespread adoption of AI technology in healthcare, many legitimate concerns must be addressed. Already, usability, health literacy, privacy, security, content quality and trust issues have been reported with many of these applications.

There is also a lack of adherence to clinical guidelines, ethical concerns, and mismatched expectations regarding the collection, communication, use, and storage of patient’s data. In addition, the limitations of the technology need to be made clear in order to avoid misinterpretations that could potentially harm patients.

If AI systems can address these challenges and focus on understanding and enhancing existing care practices and the doctor-patient relationship, we can expect to see more and more successful stories of data-driven healthcare initiatives.

4. Care robots

Will we have robots answering the door in homes? Possibly. At most people’s homes? Even if they are reasonably priced, probably not. What distinguishes successful smart technologies from unsuccessful ones is how useful they are. And how useful they are depends on the context. For most, it’s probably not that useful to have a robot answering the door. But imagine how helpful a robot receptionist could be in places where there is shortage of staff – in care homes for the elderly, for example.

Robots equipped with AI such as voice and face recognition could interact with visitors to check who they wish to visit and whether they are allowed access to the care home. After verifying that, robots with routing algorithms could guide the visitor towards the person they wish to visit. This could potentially enable staff to spend more quality time with the elderly, improving their standard of living.

The AI required still needs further advancement in order to operate in completely uncontrolled environments. But recent results are positive. Facebook‘s DeepFace software was able to match faces with 97.25% accuracy when tested on a standard database used by researchers to study the problem of unconstrained face recognition. The software is based on Deep Learning, an artificial neural network composed of millions of neuronal connections able to automatically acquire knowledge from data.

5. Flying warehouses and self-driving cars

The new postman. Shutterstock

Self-driving vehicles are arguably one of the most astonishing technologies currently being investigated. Despite the fact that they can make mistakes, they may actually be safer than human drivers. That is partly because they can use a multitude of sensors to gather data about the world, including 360-degree views around the car.

Moreover, they could potentially communicate with each other to avoid accidents and traffic jams. More than being an asset to the general public, self-driving cars are likely to become particularly useful for delivery companies, enabling them to save costs and make faster, more efficient deliveries.

Advances are still needed in order to enable the widespread use of such vehicles, not only to improve their ability to drive completely autonomously on busy roads, but also to ensure a proper legal framework is in place. Nevertheless, car manufacturers are engaging in a race against time to see who will be the first to provide a self-driving car to the masses. It is believed that the first fully autonomous car could become available as early as the next decade.

The advances in this area are unlikely to stop at self-driving cars or trucks. Amazon has recently filed a patent for flying warehouses which could visit places where the demand for certain products is expected to boom. The flying warehouses would then send out autonomous drones to make deliveries. It is unknown whether Amazon will really go ahead with developing such projects, but tests with autonomous drones are already successfully being carried out.

Thanks to technology, the future is here – we just need to think hard about how best to shape it.

This article was originally published by:
https://theconversation.com/from-flying-warehouses-to-robot-toilets-five-technologies-that-could-shape-the-future-81519

These 7 Disruptive Technologies Could Be Worth Trillions of Dollars

June 29, 2017

Scientists, technologists, engineers, and visionaries are building the future. Amazing things are in the pipeline. It’s a big deal. But you already knew all that. Such speculation is common. What’s less common? Scale.

How big is big?

“Silicon Valley, Silicon Alley, Silicon Dock, all of the Silicons around the world, they are dreaming the dream. They are innovating,” Catherine Wood said at Singularity University’s Exponential Finance in New York. “We are sizing the opportunity. That’s what we do.”

Catherine Wood at Exponential Finance.

Wood is founder and CEO of ARK Investment Management, a research and investment company focused on the growth potential of today’s disruptive technologies. Prior to ARK, she served as CIO of Global Thematic Strategies at AllianceBernstein for 12 years.

“We believe innovation is key to growth,” Wood said. “We are not focused on the past. We are focused on the future. We think there are tremendous opportunities in the public marketplace because this shift towards passive [investing] has created a lot of risk aversion and tremendous inefficiencies.”

In a new research report, released this week, ARK took a look at seven disruptive technologies, and put a number on just how tremendous they are. Here’s what they found.

(Check out ARK’s website and free report, “Big Ideas of 2017,” for more numbers, charts, and detail.)

1. Deep Learning Could Be Worth 35 Amazons

Deep learning is a subcategory of machine learning which is itself a subcategory of artificial intelligence. Deep learning is the source of much of the hype surrounding AI today. (You know you may be in a hype bubble when ads tout AI on Sunday golf commercial breaks.)

Behind the hype, however, big tech companies are pursuing deep learning to do very practical things. And whereas the internet, which unleashed trillions in market value, transformed several industries—news, entertainment, advertising, etc.—deep learning will work its way into even more, Wood said.

As deep learning advances, it should automate and improve technology, transportation, manufacturing, healthcare, finance, and more. And as is often the case with emerging technologies, it may form entirely new businesses we have yet to imagine.

“Bill Gates has said a breakthrough in machine learning would be worth 10 Microsofts. Microsoft is $550 to $600 billion,” Wood said. “We think deep learning is going to be twice that. We think [it] could approach $17 trillion in market cap—which would be 35 Amazons.”

2. Fleets of Autonomous Taxis to Overtake Automakers

Wood didn’t mince words about a future when cars drive themselves.

This is the biggest change that the automotive industry has ever faced,” she said.

Today’s automakers have a global market capitalization of a trillion dollars. Meanwhile, mobility-as-a-service companies as a whole (think ridesharing) are valued around $115 billion. If this number took into account expectations of a driverless future, it’d be higher.

The mobility-as-a-service market, which will slash the cost of “point-to-point” travel, could be worth more than today’s automakers combined, Wood said. Twice as much, in fact. As gross sales grow to something like $10 trillion in the early 2030s, her firm thinks some 20% of that will go to platform providers. It could be a $2 trillion opportunity.

Wood said a handful of companies will dominate the market, and Tesla is well positioned to be one of those companies. They are developing both the hardware, electric cars, and the software, self-driving algorithms. And although analysts tend to look at them as a just an automaker right now, that’s not all they’ll be down the road.

“We think if [Tesla] got even 5% of this global market for autonomous taxi networks, it should be worth another $100 billion today,” Wood said.

3. 3D Printing Goes Big With Finished Products at Scale

3D printing has become part of mainstream consciousness thanks, mostly, to the prospect of desktop printers for consumer prices. But these are imperfect, and the dream of an at-home replicator still eludes us. The manufacturing industry, however, is much closer to using 3D printers at scale.

Not long ago, we wrote about Carbon’s partnership with Adidas to mass-produce shoe midsoles. This is significant because, whereas industrial 3D printing has focused on prototyping to date, improving cost, quality, and speed are making it viable for finished products.

According to ARK, 3D printing may grow into a $41 billion market by 2020, and Wood noted a McKinsey forecast of as much as $490 billion by 2025. “McKinsey will be right if 3D printing actually becomes a part of the industrial production process, so end-use parts,” Wood said.

4. CRISPR Starts With Genetic Therapy, But It Doesn’t End There

According to ARK, the cost of genome editing has fallen 28x to 52x (depending on reagents) in the last four years. CRISPR is the technique leading the genome editing revolution, dramatically cutting time and cost while maintaining editing efficiency. Despite its potential, Wood said she isn’t hearing enough about it from investors yet.

“There are roughly 10,000 monogenic or single-gene diseases. Only 5% are treatable today,” she said. ARK believes treating these diseases is worth an annual $70 billion globally. Other areas of interest include stem cell therapy research, personalized medicine, drug development, agriculture, biofuels, and more.

Still, the big names in this area—Intellia, Editas, and CRISPR—aren’t on the radar.

“You can see if a company in this space has a strong IP position, as Genentech did in 1980, then the growth rates can be enormous,” Wood said. “Again, you don’t hear these names, and that’s quite interesting to me. We think there are very low expectations in that space.”

5. Mobile Transactions Could Grow 15x by 2020

By 2020, 75% of the world will own a smartphone, according to ARK. Amid smartphones’ many uses, mobile payments will be one of the most impactful. Coupled with better security (biometrics) and wider acceptance (NFC and point-of-sale), ARK thinks mobile transactions could grow 15x, from $1 trillion today to upwards of $15 trillion by 2020.

In addition, to making sharing economy transactions more frictionless, they are generally key to financial inclusion in emerging and developed markets, ARK says. And big emerging markets, such as India and China, are at the forefront, thanks to favorable regulations.

“Asia is leading the charge here,” Wood said. “You look at companies like Tencent and Alipay. They are really moving very quickly towards mobile and actually showing us the way.”

6. Robotics and Automation to Liberate $12 Trillion by 2035

Robots aren’t just for auto manufacturers anymore. Driven by continued cost declines and easier programming, more businesses are adopting robots. Amazon’s robot workforce in warehouses has grown from 1,000 to nearly 50,000 since 2014. “And they have never laid off anyone, other than for performance reasons, in their distribution centers,” Wood said.

But she understands fears over lost jobs.

This is only the beginning of a big round of automation driven by cheaper, smarter, safer, and more flexible robots. She agrees there will be a lot of displacement. Still, some commentators overlook associated productivity gains. By 2035, Wood said US GDP could be $12 trillion more than it would have been without robotics and automation—that’s a $40 trillion economy instead of a $28 trillion economy.

“This is the history of technology. Productivity. New products and services. It is our job as investors to figure out where that $12 trillion is,” Wood said. “We can’t even imagine it right now. We couldn’t imagine what the internet was going to do with us in the early ’90s.”

7. Blockchain and Cryptoassets: Speculatively Spectacular

Blockchain-enabled cryptoassets, such as Bitcoin, Ethereum, and Steem, have caused more than a stir in recent years. In addition to Bitcoin, there are now some 700 cryptoassets of various shapes and hues. Bitcoin still rules the roost with a market value of nearly $40 billion, up from just $3 billion two years ago, according to ARK. But it’s only half the total.

“This market is nascent. There are a lot of growing pains taking place right now in the crypto world, but the promise is there,” Wood said. “It’s a very hot space.”

Like all young markets, ARK says, cryptoasset markets are “characterized by enthusiasm, uncertainty, and speculation.” The firm’s blockchain products lead, Chris Burniske, uses Twitter—which is where he says the community congregates—to take the temperature. In a recent Twitter poll, 62% of respondents said they believed the market’s total value would exceed a trillion dollars in 10 years. In a followup, more focused on the trillion-plus crowd, 35% favored $1–$5 trillion, 17% guessed $5–$10 trillion, and 34% chose $10+ trillion.

Looking past the speculation, Wood believes there’s at least one big area blockchain and cryptoassets are poised to break into: the $500-billion, fee-based business of sending money across borders known as remittances.

“If you look at the Philippines-to-South Korean corridor, what you’re seeing already is that Bitcoin is 20% of the remittances market,” Wood said. “The migrant workers who are transmitting currency, they don’t know that Bitcoin is what’s enabling such a low-fee transaction. It’s the rails, effectively. They just see the fiat transfer. We think that that’s going to be a very exciting market.”

https://singularityhub.com/2017/06/16/the-disruptive-technologies-about-to-unleash-trillion-dollar-markets/

World’s first commercial CO2 removal plant begins operation

June 29, 2017

Zurich, Switzerland-based Climeworks asks, What if we could remove carbon dioxide directly from the air? Well, with a little help from technology, that is exactly what the company is doing.

The world’s first commercial carbon capture facility opened in Zurich, Switzerland on June 3, perched beside a waste incineration facility and a large greenhouse. Climeworks is a spin-off company from the Swiss science, technology, engineering, and mathematics university ETH Zurich. The startup company built the facility and Agricultural firm Gebrüder Meier Primanatura, which owns the huge greenhouse next door, will use the heat and renewable electricity provided by the carbon capture facility to run the greenhouse.
The technology behind carbon dioxide collection
The carbon capture plant consists of three stacked shipping containers that hold six CO2 collectors each. Each CO2 collector consists of a spongy filter. Fans draw ambient air into and through the collectors until they are fully saturated, while clean, CO2-free air is released back into the atmosphere, a process that takes about three hours.
Untitled

Climeworks

The containers are closed and then heated to 100 degrees Celsius (212 degrees Fahrenheit), after which the pure CO2 gas is released into containers that can either be buried underground or used for other purposes. And re-purposing the CO2 is what is so darned neat about the facility.“You can do this over and over again,” Climeworks director Jan Wurzbacher told Fast Company, according to Futurism. “It’s a cyclic process. You saturate with CO2, then you regenerate, saturate, regenerate. You have multiple of these units, and not all of them go in parallel. Some are taking in CO2, some are releasing CO2.”

What is carbon capture and storage?
Basically, carbon capture and storage (CCS) involves three phases. Capture – Carbon dioxide is removed by one of three processes, post-combustion, pre-combustion or oxyfuel combustion. These methods can remove up to 90 percent of the CO2.The next phase is Transportation – Once the CO2 is captured as a gas, it is compressed and transported to suitable sites for storage. Quite often, the CO2 is piped. In Climeworks facility, it is collected in containers on-site to be used in a variety of industries.

Carbon storage diagram showingmethods of CO2 injection.

Carbon storage diagram showingmethods of CO2 injection.
U.S. Department of Energy

Storage of CO2 is the third stage of the CCS process – This involves exactly what the word implies, storage. Right now, the primary way of doing this is to inject the COs into a geological formation that would keep it safely underground. Depleted oil and gas fields or deep saline formations have been suggested.Again, Climeworks is re-purposing the captured pure CO2. They are selling containers of carbon dioxide gas to a number of key markets, including food and beverage industries, commercial agriculture, the energy sector and the automotive industry. This atmospheric CO2 can be found in carbonated drinks, in agriculture or for producing carbon-neutral hydrocarbon fuels and materials. Futurism is reporting that Climeworks says that if we are to keep the planet’s temperature from increasing more than 2 degrees Celsius (3.6 degrees Fahrenheit), we will need hundreds of thousands of these carbon capture facilities. But at the same time, this does not mean we should stop trying to lower greenhouse gas emissions. All over the planet, technology is being used to find innovative ways to capture carbon and use it for other purposes. One example – researchers at the University of California, Los Angeles (UCLA), have found a way to turn captured carbon into concrete for use in the building trade.

The smartphone is eventually going to die, and then things are going to get really crazy

May 28, 2017

One day, not too soon — but still sooner than you think — the smartphone will all but vanish, the way beepers and fax machines did before it.

Make no mistake: We’re still probably at least a decade away from any kind of meaningful shift away from the smartphone. (And if we’re all cyborgs by 2027, I’ll happily eat my words. Assuming we’re still eating at all, I guess.)

Yet, piece by piece, the groundwork for the eventual demise of the smartphone is being laid by Elon Musk, Microsoft, Facebook, Amazon, and a countless number of startups that still have a part to play.

And, let me tell you: If and when the smartphone does die, that’s when things are going to get really weird for everybody. Not just in terms of individual products but in terms of how we actually live our everyday lives and maybe our humanity itself.

Here’s a brief look at the slow, ceaseless march toward the death of the smartphone — and what the post-smartphone world is shaping up to look like.

The short term

People think of the iPhone and the smartphones it inspired as revolutionary devices — small enough to carry everywhere, hefty enough to handle an increasingly large number of daily tasks, and packed full of the right mix of cameras and GPS sensors to make apps like Snapchat and Uber uniquely possible.

But consider the smartphone from another perspective. The desktop PC and the laptop are made up of some combination of a mouse, keyboard, and monitor. The smartphone just took that model, shrank it, and made the input virtual and touch-based.

So take, for example, the Samsung Galaxy S8, unveiled this week. It’s gorgeous with an amazing bezel-less screen and some real power under the hood. It’s impressive, but it’s more refinement than revolution.

Samsung Galaxy S8Samsung Galaxy S8.Business Insider

Tellingly, though, the Galaxy S8 ships with Bixby, a new virtual assistant that Samsung promises will one day let you control every single feature and app with just your voice. It will also ship with a new version of the Gear VR virtual reality headset, developed in conjunction with Facebook’s Oculus.

The next iPhone, too, is said to be shipping with upgrades to the Siri assistant, along with features aimed at bringing augmented reality into the mainstream.

And as devices like the Amazon Echo, the Sony PlayStation VR, and the Apple Watch continue to enjoy limited but substantial success, expect to see a lot more tech companies large and small taking more gambles and making more experiments on the next big wave in computing interfaces.

The medium term

In the medium term, all of these various experimental and first-stage technologies will start to congeal into something familiar but bizarre.

Microsoft, Facebook, Google, and the Google-backed Magic Leap are all working to build standalone augmented-reality headsets, which project detailed 3D images straight into your eyes. Even Apple is rumored to be working on this.

Microsoft’s Alex Kipman recently told Business Insider that augmented reality could flat-out replace the smartphone, the TV, and anything else with a screen. There’s not much use for a separate device sitting in your pocket or on your entertainment center if all your calls, chats, movies, and games are beamed into your eyes and overlaid on the world around you.

apple airpods in earApple’s AirPods keep the Siri virtual assistant in your ears.Hollis Johnson/Business Insider

At the same time, gadgetry like the Amazon Echo or Apple’s own AirPods become more and more important in this world. As artificial-intelligence systems like Apple’s Siri, Amazon’s Alexa, Samsung’s Bixby, and Microsoft’s Cortana get smarter, there will be a rise not just in talking to computers but in having them talk back.

In other words, computers will hijack your senses, more so than they already do, with your sight and your hearing intermediated by technology. It’s a little scary. Think of what Facebook glitches could mean in a world where it doesn’t just control what you read on your phone but in what you see in the world around you.

The promise, though, is a world where real life and technology blend more seamlessly. The major tech companies promise that this future means a world of fewer technological distractions and more balance, as the physical and digital world become the same thing. You decide how you feel about that.

The really crazy future

Still, all those decade-plus investments in the future still rely on gadgetry that you have to wear, even if it’s only a pair of glasses. Some of the craziest, most forward-looking, most unpredictable advancements go even further — provided you’re willing to wait a few extra decades, that is.

This week, we got our first look at Neuralink, a new company cofounded by Musk with a goal of building computers into our brains by way of “neural lace,” a very early-stage technology that lays on your brain and bridges it to a computer. It’s the next step beyond even that blending of the digital and physical worlds, as human and machine become one.

Assuming the science works — and lots of smart people believe that it will — this is the logical endpoint of the road that smartphones started us on. If smartphones gave us access to information and augmented reality puts that information in front of us when we need it, then putting neural lace in our brains just closes the gap.

Ray KurzweilFuturist Ray Kurzweil has been predicting our cyborg futures for a long time now.Tech Insider

Musk has said this is because the rise of artificial intelligence — which underpins a lot of the other technologies, including voice assistants and virtual reality — means humans will have to augment themselves just to keep up with the machines. If you’re really curious about this idea, futurist Ray Kurzweil is the leading voice on the topic.

The idea of human/machine fusion is a terrifying one, with science-fiction writers, technologists, and philosophers alike having very good cause to ask what even makes us human in the first place. At the same time, the idea is so new that nobody really knows what this world would look like in practice.

So if and when the smartphone dies, it’ll actually be the end of an era in more ways than one. It’ll be the end of machines that we carry with us passively and the beginning of something that bridges our bodies straight into the ebb and flow of digital information. It’s going to get weird.

And yet, lots of technologists already say that smartphones give us superpowers with access to knowledge, wisdom, and abilities beyond anything nature gave us. In some ways, augmenting the human mind would be the ultimate superpower. Then again, maybe I’m just an optimist.

http://www.businessinsider.com/death-of-the-smartphone-and-what-comes-after-2017-3