Scientists Have Made a Huge Breakthrough In Cryogenics

March 30, 2017

Cryopreservation

Cryopreservation is the process of freezing organs and tissues at very low temperatures in order to preserve them. While it sounds simple in theory, only a handful of cells and tissues have survived this method. This is because while science has successfully developed ways to cool organs to the very low temperatures required for preservation, thawing them out has proven far more difficult. As the specimen thaws, it forms ice crystals, which can damage the tissue and render organs unusable.

Right now, the process is only a viable option for small samples, such as sperm or embryos. Previous efforts using slow warming techniques have proven to be effective on samples of that size, but haven’t worked for larger tissue samples, like whole human organs. The inability to safely thaw the tissue has also precluded the theoretical concept of cryogenically preserving entire human bodies, with the intention of reanimating them later. The concept has roots in cryogenic technology, but is actually referred to as “cryonics”, and the scientific community generally considers it to be more science fiction than science fact — at least for the time being.

A recent study has made a significant breakthrough which may well begin closing that gap even more. Using a new technique, scientists were able to cryopreserve human and pig samples, then successfully rewarm it without causing any damage to the tissue.

As lead researcher John Bischof from the University of Minnesota notes:

This is the first time that anyone has been able to scale up to a larger biological system and demonstrate successful, fast, and uniform warming of hundreds of degrees Celsius per minute of preserved tissue without damaging the tissue.

By using nanoparticles to heat the tissues at an equal rate, scientists were able to prevent the formation of those destructive ice crystals. The researchers mixed silica-coated iron oxide nanoparticles in a solution and applied an external magnetic field to generate heat. The process was tested on several human and pig tissue samples, and it showed that nanowarming achieves the same speed of thawing as the use of traditional convection techniques.

Preserving Organs and Saving Lives

One theoretical application for this discovery would be, of course, bringing cryogenic life-extension techniques out of the realm of science fiction and into reality. But we’re not quite there yet.

A more practical application for the technique would be to safely preserve and store organs for extended periods, thus improving the logistical challenges behind organ transplantation.

According to statistics from the United Network for Organ Sharing, 22 people die every day in the US while waiting for organ transplants. Contrary to popular belief, this isn’t because there is a shortage of organs being donated — it’s because organs cannot be preserved for more than a few hours. So, while there are available organs ready to be transplanted, the time it takes to find a matching recipient and transport the organ safely to their location often exceeds the window of time in which the organ remains viable for transplant.

Over half of donated hearts and lungs are thrown out each year because they don’t make it to patients in time. They can only be kept on ice for four hours, and while some organs can last longer than others without a blood supply during transport, it’s still not a long enough in many cases.

“If only half of these discarded organs were transplanted, then it has been estimated that wait lists for these organs could be extinguished within two to three years,” Bischof adds. With the help of cryopreservation technology, we may be well on our way to keeping donated organs viable for longer — meaning they could be transported to patients who need them even if distance and time stands between them.

https://futurism.com/4-scientists-have-found-a-way-to-rapidly-thaw-cryopreserved-tissue-without-damage/

Jeff Bezos, Mayo Clinic back anti-aging startup Unity Biotechnology for $116 million

March 30, 2017

Every once in a while someone in Silicon Valley brings up the possibility of living forever, or at least a really long time, but first we’re going to need to figure out a way to enjoy all those extra years. Unity Biotechnology is a startup focusing on medicines to help us do that by slowing the effects of age-related diseases. And the company announced it has pulled in a whopping $116 million in Series B financing today — some of which came from Amazon’s Jeff Bezos.

Sometimes your body keeps aging cells around longer. These cells stop dividing after some form of stress,which is an anti-cancer mechanism that keeps damaged cells from dividing and growing out of control. But too much build-up of those types of cells leads to other problems as we age. Unity looks for ways to help your body shed older cells causing inflammation and other diseases linked to aging.

Unity holds a great amount of potential in preventing our bodies from aging as fast and that has perked some of the top investors in science and medicine and is one of the larger private financings in biotech history.

But it’s not the first time Bezos has invested in biotech. The Amazon CEO placed his bets on Juno Therapeutics back in 2014, through his venture capital arm Bezos Expeditions. Juno is one of the IPO success stories in the biotech world for its breakthrough discoveries in cancer medicine.

The Scottish-based mutual fund Baillie Gifford, which has also invested in several biotech companies, also invested in this round — as did Venrock, ARCH Venture Capital, Mayo Clinic and WuXi Pharmaceuticals.

The company also announced it would be placing Keith Leonard — the former CEO of KYTHERA Biopharmaceuticals — in the role of CEO and that previous CEO and co-founder Nathaniel “Ned” David will now be Unity’s president.

Jeff Bezos, Mayo Clinic back anti-aging startup Unity Biotechnology for $116 million

10 Tech Trends That Made the World Better in 2016

March 30, 2017

2016 was an incredible year for technology, and for humanity.

Despite all the negative political-related news, there were 10 tech trends this year that positively transformed humanity.

For this “2017 Kick-Off” post, I reviewed 52 weeks of science and technology breakthroughs, and categorized them into the top 10 tech trends changing our world.

I’m blown away by how palpable the feeling of exponential change has become.

I’m also certain that 99.99% of humanity doesn’t understand or appreciate the ramifications of what is coming.

In this post, enjoy the top 10 tech trends of the past 12 months and why they are important to you.

Let’s dive in…

1. We Are Hyper-Connecting the World

In 2010, 1.8 billion people were connected. Today, that number is about 3 billion, and by 2022 – 2025, that number will expand to include every human on the planet, approaching 8 billion humans.

Unlike when I was connected 20 years ago at 9,600 baud via AOL, the world today is coming online at one megabit per second or greater, with access to the world’s information on Google, access to the world’s products on Amazon, access to massive computing power on AWS and artificial intelligence with Watson… not to mention crowdfunding for capital and crowdsourcing for expertise.

Looking back at 2016, you can feel the acceleration. Here are seven stories that highlight the major advances in our race for global connectivity:

a) Google’s 5G Solar Drones Internet Service: Project Skybender is Google’s secretive 5G Internet drone initiative. News broke this year that they have been testing these solar-powered drones at Spaceport America in New Mexico to explore ways to deliver high-speed Internet from the air. Their purported millimeter wave technology could deliver data from drones up to 40 times faster than 4G.

b) Facebook’s Solar Drone Internet Service: Even before Google, Facebook has been experimenting with a solar-powered drone, also for the express purpose of providing Internet to billions. The drone has the wingspan of an airliner and flies with roughly the power of three blowdryers.

c) ViaSat Plans 1 Terabit Internet Service: ViaSat, a U.S.-based satellite company, has teamed up with Boeing to launch three satellites to provide 1 terabit-per-second Internet connections to remote areas, aircraft and maritime vehicles. ViaSat is scheduled to launch its satellite ViaSat2 in early 2017.

d) OneWeb Raises $1.2B for 900 Satellite Constellation: An ambitious low-Earth orbit satellite system proposed by my friends Greg Wyler, Paul Jacobs and Richard Branson just closed $1.2 billion in financing. This 900-satellite system will offer global internet services as soon as 2019.

e) Musk Announces 4,425 Internet Satellite System: Perhaps the most ambitious plan for global internet domination was proposed this year by SpaceX founder Elon Musk, with plans for SpaceX to deploy a 4,425 low-Earth orbit satellite system to blanket the entire planet in broadband.

2. Solar/Renewables Cheaper Than Coal

We’ve just exceeded a historic inflection point. 2016 was the year solar and renewable energy became cheaper than coal.

In December, the World Economic Forum reported that solar and wind energy is now the same price or cheaper than new fossil fuel capacity in more than 30 countries.

“As prices for solar and wind power continue their precipitous fall, two-thirds of all nations will reach the point known as ‘grid parity’ within a few years, even without subsidies,” they added.

This is one of the most important developments in the history of humanity, and this year marked a number of major milestones for renewable energy.

Here’s 10 data points (stories) I’ve hand-picked to hammer home the historic nature of this 2016 achievement.

a) 25 percent of the World’s Power Comes From Renewables: REN21, a global renewable energy policy network, published a report showing that a quarter of the world’s power now comes from renewable energy. International investment in renewable energy reached $286 billion last year (with solar accounting for over $160b of this), and it’s accelerating.

b) In India, Solar Is Now Cheaper Than Coal: An amazing milestone indeed, and India is now on track to deploy >100 gigawatts of solar power by 2022.

c) The UK Is Generating More Energy From Solar Than Coal: For the first time in history, this year the U.K. has produced an estimated 6,964 GWh of electricity from solar cells, 10% higher than the 6,342 GWh generated by coal.

d) Coal Plants Being Replaced by Solar Farms: The Nanticoke Generating Station in Ontario, once North America’s largest coal plant, will be turned into a solar farm.

e) Coal Will Never Recover: The coal industry, once the backbone of U.S. energy, is fading fast on account of renewables like solar and wind. Official and expert reports now state that it will never recover (e.g., coal power generation in Texas is down from 39% in early 2015 to 24.8% in May 2016).

f) Scotland Generated 106% Energy From Wind: This year, high winds boosted renewable energy output to provide 106% of Scotland’s electricity needs for a day.

g) Costa Rica Ran on Renewables for 2+ Months: The country ran on 100% renewable energy for 76 days.

h) Google to Run 100% on Renewable Energy: Google has announced its entire global business will be powered by renewable energy in 2017.

i) Las Vegas’ City Government Meets Goal of 100% Power by Renewables: Las Vegas is now the largest city government in the country to run entirely on renewable energy.

j) Tesla’s Gigafactory: Tesla’s $5 billion structure in Nevada will produce 500,000 lithium ion batteries annually and Tesla’s Model III vehicle. It is now over 30 percent complete… the 10 million square foot structure is set to be done by 2020. Musk projected that a total of 100 Gigafactories could provide enough storage capacity to run the entire planet on renewables.

3. Glimpsing the End of Cancer and Disease

Though it may seem hard to believe, the end of cancer and disease is near.

Scientists and researchers have been working diligently to find novel approaches to combating these diseases, and 2016 saw some extraordinary progress in this regard.

Here’re my top 10 picks that give me great faith about our abilities to cure cancer and most diseases:

a) Cancer Immunotherapy Makes Strides (Extraordinary Results): Immunotherapy involves using a patient’s own immune system (in this case, T cells) to fight cancer. Doctors remove immune cells from patients, tag them with “receptor” molecules that target the specific cancer, and then infuse the cells back in the body. During the study, 94% of patients with acute lymphoblastic leukemia (ALL) saw symptoms vanish completely. Patients with other blood cancers had response rates greater than 80%, and more than half experienced complete remission.

b) In China, CRISPR/Cas9 used in First Human Trial: A team of scientists in China (Sichuan University) became the first to treat a human patient with an aggressive form of lung cancer with the groundbreaking CRISPR-Cas9 gene-editing technique.

c) NIH Approves Human Trials Using CRISPR: A team of physicians at the University of Pennsylvania’s School of Medicine had their project of modifying the immune cells of 18 different cancer patients with the CRISPR-Cas9 system approved by the National Institute of Health. Results are TBD.

d) Giant Leap in Treatment of Diabetes from Harvard: For the first time, Harvard stem cell researchers created “insulin producing” islet cells to cure diabetes in mice. This offers a promising cure in humans as well.

e) HIV Genes Cut Out of Live Animals Using CRISPR: Scientists at the Comprehensive NeuroAIDS Center at Temple University were able to successfully cut out the HIV genes from live animals, and they had over a 50% success rate.

f) New Treatment Causes HIV Infected Cells to Vanish: A team of scientists in the U.K. discovered a new treatment for HIV. The patient was treated with vaccines that helped the body recognize the HIV-infected cells. Then, the drug Vorinostat was administered to activate the dormant cells so they could be spotted by the immune system.

g) CRISPR Cures Mice of Sickle Cell Disease: CRISPR was used to completely cure sickle cell by editing the errant DNA sequence in mice. The treatment may soon be used to cure this disease, which affects about 100,000 Americans.

h) Eradicating Measles (in the U.S.): The World Health Organization (WHO) announced that after 50 years, they have successfully eradicated measles in the U.S. This is one of the most contagious diseases around the world.

i) New Ebola Vaccine Proved to be 100% Effective: None of the nearly 6,000 individuals vaccinated with rVSV-ZEBOV in Guinea, a country with more than 3,000 confirmed cases of Ebola, showed any signs of contracting the disease.

j) Eradicating Polio: The World Health Organization has announced that it expects to fully eradicate polio worldwide by Early 2017.

4. Progress on Extending Human Life

I am personally convinced that we are on the verge of significantly impacting human longevity. At a minimum, making “100 years old the new 60,” as we say at Human Longevity Inc.

This year, hundreds of millions of dollars were poured into research initiatives and companies focused on extending life.

Here are five of the top stories from 2016 in longevity research:

a) 500-Year-Old Shark Discovered: A Greenland shark that could have been over 500 years old was discovered this year, making the species the longest-lived vertebrate in the world.

b) Genetically Reversing Aging: With an experiment that replicated stem cell-like conditions, Salk Institute researchers made human skin cells in a dish look and behave young again, and mice with premature aging disease were rejuvenated with a 30% increase in lifespan. The Salk Institute expects to see this work in human trials in less than 10 years.

c) 25% Life Extension Based on Removal of Senescent Cells: Published in the medical journal Nature, cell biologists Darren Baker and Jan van Deursen have found that systematically removing a category of living, stagnant cells can extend the life of mice by 25 percent.

d) Funding for Anti-Aging Startups: Jeff Bezos and the Mayo Clinic-backed Anti-Aging Startup Unity Biotechnology with $116 million. The company will focus on medicines to slow the effects of age-related diseases by removing senescent cells (as mentioned in the article above).

e) Young Blood Experiments Show Promising Results for Longevity: Sakura Minami and her colleagues at Alkahest, a company specializing in blood-derived therapies for neurodegenerative diseases, have found that simply injecting older mice with the plasma of young humans twice a week improved the mice’s cognitive functions as well as their physical performance. This practice has seen a 30% increase in lifespan, and increase in muscle tissue and cognitive function.

More at: https://singularityhub.com/2017/01/05/10-tech-trends-that-made-the-world-better-in-2016/

Scientists reverse aging in mice by repairing damaged DNA

March 30, 2017

Could lead to an anti-aging drug that counters damage from old age, cancer, and radiation.

A research team led by Harvard Medical School professor of genetics David Sinclair, PhD, has made a discovery that could lead to a revolutionary new drug that allows cells to repair DNA damaged by aging, cancer, and radiation.

In a paper published in the journal Science on Friday (March 24), the scientists identified a critical step in the molecular process related to DNA damage.

The researchers found that a compound known as NAD (nicotinamide adenine dinucleotide), which is naturally present in every cell of our body, has a key role as a regulator in protein-to-protein interactions that control DNA repair. In an experiment, they found that treating mice with a NAD+ precursor called NMN (nicotinamide mononucleotide) improved their cells’ ability to repair DNA damage.

“The cells of the old mice were indistinguishable from the young mice, after just one week of treatment,” said senior author Sinclair.

Disarming a rogue agent: When the NAD molecule (red) binds to the DBC1 protein (beige), it prevents DBC1 from attaching to and incapacitating a protein (PARP1) that is critical for DNA repair. (credit: David Sinclair)

Human trials of NMN therapy will begin within the next few months to “see if these results translate to people,” he said. A safe and effective anti-aging drug is “perhaps only three to five years away from being on the market if the trials go well.”

What it means for astronauts, childhood cancer survivors, and the rest of us

The researchers say that in addition to reversing aging, the DNA-repair research has attracted the attention of NASA. The treatment could help deal with radiation damage to astronauts in its Mars mission, which could cause muscle weakness, memory loss, and other symptoms (see “Mars-bound astronauts face brain damage from galactic cosmic ray exposure, says NASA-funded study“), and more seriously, leukemia cancer and weakened immune function (see “Travelers to Mars risk leukemia cancer, weakend immune function from radiation, NASA-funded study finds“).

The treatment could also help travelers aboard aircraft flying across the poles. A 2011 NASA study showed that passengers on polar flights receive about 12 percent of the annual radiation limit recommended by the International Committee on Radiological Protection.

The other group that could benefit from this work is survivors of childhood cancers, who are likely to suffer a chronic illness by age 45, leading to accelerated aging, including cardiovascular disease, Type 2 diabetes, Alzheimer’s disease, and cancers unrelated to the original cancer, the researchers noted.

For the past four years, Sinclair’s team has been working with spinoff MetroBiotech on developing NMN as a drug. Sinclair previously made a link between the anti-aging enzyme SIRT1 and resveratrol. “While resveratrol activates SIRT1 alone, NAD boosters [like NMN] activate all seven sirtuins, SIRT1-7, and should have an even greater impact on health and longevity,” he says.

Sinclair is also a professor at the University of New South Wales School of Medicine in Sydney, Australia.


Abstract of A conserved NAD+ binding pocket that regulates protein-protein interactions during aging

DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD+ (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD+ to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate–ribose) polymerase], a critical DNA repair protein. As mice age and NAD+ concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD+. Thus, NAD+ directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging.

Exponential Growth Will Transform Humanity in the Next 30 Years

February 25, 2017

aaeaaqaaaaaaaambaaaajgqyndzhmtlilwu4yzctndlkns04mwrhltdjmdi4nwi3yzrlng

By Peter Diamantis

As we close out 2016, if you’ll allow me, I’d like to take a risk and venture into a topic I’m personally compelled to think about… a topic that will seem far out to most readers.

Today’s extraordinary rate of exponential growth may do much more than just disrupt industries. It may actually give birth to a new species, reinventing humanity over the next 30 years.

I believe we’re rapidly heading towards a human-scale transformation, the next evolutionary step into what I call a “Meta-Intelligence,” a future in which we are all highly connected—brain to brain via the cloud—sharing thoughts, knowledge and actions. In this post, I’m investigating the driving forces behind such an evolutionary step, the historical pattern we are about to repeat, and the implications thereof. Again, I acknowledge that this topic seems far-out, but the forces at play are huge and the implications are vast. Let’s dive in…

A Quick Recap: Evolution of Life on Earth in 4 Steps

About 4.6 billion years ago, our solar system, the sun and the Earth were formed.

Step 1: 3.5 billion years ago, the first simple life forms, called “prokaryotes,” came into existence.These prokaryotes were super-simple, microscopic single-celled organisms, basically a bag of cytoplasm with free-floating DNA. They had neither a distinct nucleus nor specialized organelles.

Step 2: Fast-forwarding one billion years to 2.5 billion years ago, the next step in evolution created what we call “eukaryotes”—life forms that distinguished themselves by incorporating biological ‘technology’ into themselves. Technology that allowed them to manipulate energy (via mitochondria) and information (via chromosomes) far more efficiently. Fast forward another billion years for the next step.

Step 3: 1.5 billion years ago, these early eukaryotes began working collaboratively and formed the first “multi-cellular life,” of which you and I are the ultimate examples (a human is a multicellular creature of 10 trillion cells).

Step 4: The final step I want to highlight happened some 400 million years ago, when lungfish crawled out of the oceans onto the shores, and life evolved from the oceans onto land.

The Next Stages of Human Evolution: 4 Steps

Today, at a massively accelerated rate—some 100 million times faster than the steps I outlined above—life is undergoing a similar evolution. In this next stage of evolution, we are going from evolution by natural selection (Darwinism) to evolution by intelligent direction. Allow me to draw the analogy for you:

Step 1: Simple humans today are analogous to prokaryotes. Simple life, each life form independent of the others, competing and sometimes collaborating.

Step 2: Just as eukaryotes were created by ingesting technology, humans will incorporate technology into our bodies and brains that will allow us to make vastly more efficient use of information (BCI) and energy.

Step 3: Enabled with BCI and AI, humans will become massively connected with each other and billions of AIs (computers) via the cloud, analogous to the first multicellular lifeforms 1.5 billion years ago. Such a massive interconnection will lead to the emergence of a new global consciousness, and a new organism I call the Meta-Intelligence.

Step 4: Finally, humanity is about to crawl out of the gravity well of Earth to become a multiplanetary species. Our journey to the moon, Mars, asteroids and beyond represents the modern-day analogy of the journey made by lungfish climbing out of the oceans some 400 million years ago.

The 4 Forces Driving the Evolution and Transformation of Humanity

Four primary driving forces are leading us towards our transformation of humanity into a meta-intelligence both on and off the Earth:

  1. We’re wiring our planet
  2. Emergence of brain-computer interface
  3. Emergence of AI
  4. Opening of the space frontier

Let’s take a look.

1. Wiring the Planet: Today, there are 2.9 billion people connected online. Within the next six to eight years, that number is expected to increase to nearly 8 billion, with each individual on the planet having access to a megabit-per-second connection or better. The wiring is taking place through the deployment of 5G on the ground, plus networks being deployed by Facebook, Google, Qualcomm, Samsung, Virgin, SpaceX and many others. Within a decade, every single human on the planet will have access to multi-megabit connectivity, the world’s information, and massive computational power on the cloud.

2. Brain-Computer Interface: A multitude of labs and entrepreneurs are working to create lasting, high-bandwidth connections between the digital world and the human neocortex (I wrote about that in detail here). Ray Kurzweil predicts we’ll see human-cloud connection by the mid-2030s, just 18 years from now. In addition, entrepreneurs like Bryan Johnson (and his company Kernel) are committing hundreds of millions of dollars towards this vision. The end results of connecting your neocortex with the cloud are twofold: first, you’ll have the ability to increase your memory capacity and/or cognitive function millions of fold; second, via a global mesh network, you’ll have the ability to connect your brain to anyone else’s brain and to emerging AIs, just like our cell phones, servers, watches, cars and all devices are becoming connected via the Internet of Things.

3. Artificial Intelligence/Human Intelligence: Next, and perhaps most significantly, we are on the cusp of an AI revolution. Artificial intelligence, powered by deep learning and funded by companies such as Google, Facebook, IBM, Samsung and Alibaba, will continue to rapidly accelerate and drive breakthroughs. Cumulative “intelligence” (both artificial and human) is the single greatest predictor of success for both a company or a nation. For this reason, beside the emerging AI “arms race,” we will soon see a race focused on increasing overall human intelligence. Whatever challenges we might have in creating a vibrant brain-computer interface (e.g., designing long-term biocompatible sensors or nanobots that interface with your neocortex), those challenges will fall quickly over the next couple of decades as AI power tools give us ever-increasing problem-solving capability. It is an exponential atop an exponential. More intelligence gives us the tools to solve connectivity and mesh problems and in turn create greater intelligence.

4. Opening the Space Frontier: Finally, it’s important to note that the human race is on the verge of becoming a multiplanetary species. Thousands of years from now, whatever we’ve evolved into, we will look back at these next few decades as the moment in time when the human race moved off Earth irreversibly. Today, billions of dollars are being invested privately into the commercial space industry. Efforts led by SpaceX are targeting humans on Mars, while efforts by Blue Origin are looking at taking humanity back to the moon, and plans by my own company, Planetary Resources, strive to unlock near-infinite resources from the asteroids.

In Conclusion

The rate of human evolution is accelerating as we transition from the slow and random process of “Darwinian natural selection” to a hyper-accelerated and precisely-directed period of “evolution by intelligent direction.” In this post, I chose not to discuss the power being unleashed by such gene-editing techniques as CRISPR-Cas9. Consider this yet another tool able to accelerate evolution by our own hand.

The bottom line is that change is coming, faster than ever considered possible. All of us leaders, entrepreneurs and parents have a huge responsibility to inspire and guide the transformation of humanity on and off the Earth. What we do over the next 30 years—the bridges we build to abundance—will impact the future of the human race for millennia to come. We truly live during the most exciting time ever in human history.

https://singularityhub.com/2016/12/21/exponential-growth-will-transform-humanity-in-the-next-30-years/

Nanoarray sniffs out and distinguishes ‘breathprints’ of multiple diseases

February 25, 2017

breathprint-system

An international team of 63 scientists in 14 clinical departments have identified a unique “breathprint” for 17 diseases with 86% accuracy and have designed a noninvasive, inexpensive, and miniaturized portable device that screens breath samples to classify and diagnose several types of diseases, they report in an open-access paper in the journal ACS Nano.

As far back as around 400 B.C., doctors diagnosed some diseases by smelling a patient’s exhaled breath, which contains nitrogen, carbon dioxide, oxygen, and a small amount of more than 100 other volatile chemical components. Relative amounts of these substances vary depending on the state of a person’s health. For example, diabetes creates a sweet breath smell. More recently, several teams of scientists have developed experimental breath analyzers, but most of these instruments focus on one disease, such as diabetes and melanoma, or a few diseases.

Detecting 17 diseases

The researchers developed an array of nanoscale sensors to detect the individual components in thousands of breath samples collected from 1404 patients who were either healthy or had one of 17 different diseases*, such as kidney cancer or Parkinson’s disease.

The team used mass spectrometry to identify the breath components associated with each disease. By analyzing the results with artificial intelligence techniques (binary classifiers), the team found that each disease produces a unique breathprint, based on differing amounts of 13 volatile organic chemical (VOC) components. They also showed that the presence of one disease would not prevent the detection of others — a prerequisite for developing a practical device to screen and diagnose various diseases.

Based on the research, the team designed an organic layer that functions as a sensing layer (recognition element) for adsorbed VOCs and an electrically conductive nanoarray based on resistive layers of molecularly modified gold nanoparticles and a random network of single-wall carbon nanotubes. The nanoparticles and nanotubes have different electrical conductivity patterns associated with different diseases.**

The authors received funding from the ERC and LCAOS of the European Union’s Seventh Framework Programme for Research and Technological Development, the EuroNanoMed Program under VOLGACORE, and the Latvian Council of Science.

* Lung cancer, colorectal cancer, head and neck cancer, ovarian cancer, bladder cancer, prostate cancer, kidney cancer, gastric cancer, Crohn’s disease, ulcerative colitis, irritable bowel syndrome, idiopathic Parkinson’s, atypical Parkinsonism, multiple sclerosis, pulmonary arterial hypertension, pre-eclampsia, and chronic kidney disease.

** During exposure to breath samples, interaction between the VOC components and the organic sensing layer changes the electrical resistance of the sensors. The relative change of sensor’s resistance at the peak (beginning), middle, and end of the exposure, as well as the area under the curve of the whole measurement were measured. All breath samples identified by the AI nanoarray were also examined using an independent lab-based analytical technique: gas chromatography linked with mass spectrometry.


Abstract of Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules

We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoarray was clinically assessed on breath samples collected from 1404 subjects having one of 17 different disease conditions included in the study or having no evidence of any disease (healthy controls). Blind experiments showed that 86% accuracy could be achieved with the artificially intelligent nanoarray, allowing both detection and discrimination between the different disease conditions examined. Analysis of the artificially intelligent nanoarray also showed that each disease has its own unique breathprint, and that the presence of one disease would not screen out others. Cluster analysis showed a reasonable classification power of diseases from the same categories. The effect of confounding clinical and environmental factors on the performance of the nanoarray did not significantly alter the obtained results. The diagnosis and classification power of the nanoarray was also validated by an independent analytical technique, i.e., gas chromatography linked with mass spectrometry. This analysis found that 13 exhaled chemical species, called volatile organic compounds, are associated with certain diseases, and the composition of this assembly of volatile organic compounds differs from one disease to another. Overall, these findings could contribute to one of the most important criteria for successful health intervention in the modern era, viz. easy-to-use, inexpensive (affordable), and miniaturized tools that could also be used for personalized screening, diagnosis, and follow-up of a number of diseases, which can clearly be extended by further development.

http://www.kurzweilai.net/nanoarray-sniffs-out-and-distinguishes-multiple-diseases?utm_source=KurzweilAI+Weekly+Newsletter&utm_campaign=599cd194cc-UA-946742-1&utm_medium=email&utm_term=0_147a5a48c1-599cd194cc-282129417

The Fourth Industrial Revolution Is Here

February 25, 2017

The Fourth Industrial Revolution is upon us and now is the time to act.

Everything is changing each day and humans are making decisions that affect life in the future for generations to come.

We have gone from Steam Engines to Steel Mills, to computers to the Fourth Industrial Revolution that involves a digital economy, artificial intelligence, big data and a new system that introduces a new story of our future to enable different economic and human models.

Will the Fourth Industrial Revolution put humans first and empower technologies to give humans a better quality of life with cleaner air, water, food, health, a positive mindset and happiness? HOPE…

http://www.huffingtonpost.com/craig-zamary/the-fourth-industrial-rev_3_b_12423658.html

New gene-editing technology partially restores vision in blind animals

February 25, 2017

shutterstock_353873630

Salk Institute researchers have discovered a holy grail of gene editing — the ability to, for the first time, insert DNA at a target location into the non-dividing cells that make up the majority of adult organs and tissues. The technique, which the team showed was able to partially restore visual responses in blind rodents, will open new avenues for basic research and a variety of treatments, such as for retinal, heart and neurological diseases.

“We are very excited by the technology we discovered because it’s something that could not be done before,” says Juan Carlos Izpisua Belmonte, a professor in Salk’s Gene Expression Laboratory and senior author of the paper published on November 16, 2016 in Nature. “For the first time, we can enter into cells that do not divide and modify the DNA at will. The possible applications of this discovery are vast.”

Until now, techniques that modify DNA — such as the CRISPR-Cas9 system — have been most effective in dividing cells, such as those in skin or the gut, using the cells’ normal copying mechanisms. The new Salk technology is ten times more efficient than other methods at incorporating new DNA into cultures of dividing cells, making it a promising tool for both research and medicine. But, more importantly, the Salk technique represents the first time scientists have managed to insert a new gene into a precise DNA location in adult cells that no longer divide, such as those of the eye, brain, pancreas or heart, offering new possibilities for therapeutic applications in these cells.

To achieve this, the Salk researchers targeted a DNA-repair cellular pathway called NHEJ (for “non-homologous end-joining”), which repairs routine DNA breaks by rejoining the original strand ends. They paired this process with existing gene-editing technology to successfully place new DNA into a precise location in non-dividing cells.

“Using this NHEJ pathway to insert entirely new DNA is revolutionary for editing the genome in live adult organisms,” says Keiichiro Suzuki, a senior research associate in the Izpisua Belmonte lab and one of the paper’s lead authors. “No one has done this before.”

First, the Salk team worked on optimizing the NHEJ machinery for use with the CRISPR-Cas9 system, which allows DNA to be inserted at very precise locations within the genome. The team created a custom insertion package made up of a nucleic acid cocktail, which they call HITI, or homology-independent targeted integration. Then they used an inert virus to deliver HITI’s package of genetic instructions to neurons derived from human embryonic stem cells.

“That was the first indication that HITI might work in non-dividing cells,” says Jun Wu, staff scientist and co-lead author. With that feat under their belts, the team then successfully delivered the construct to the brains of adult mice. Finally, to explore the possibility of using HITI for gene-replacement therapy, the team tested the technique on a rat model for retinitis pigmentosa, an inherited retinal degeneration condition that causes blindness in humans. This time, the team used HITI to deliver to the eyes of 3-week-old rats a functional copy of Mertk, one of the genes that is damaged in retinitis pigmentosa. Analysis performed when the rats were 8 weeks old showed that the animals were able to respond to light, and passed several tests indicating healing in their retinal cells.

“We were able to improve the vision of these blind rats,” says co-lead author Reyna Hernandez-Benitez, a Salk research associate. “This early success suggests that this technology is very promising.”

The team’s next steps will be to improve the delivery efficiency of the HITI construct. As with all genome editing technologies, getting enough cells to incorporate the new DNA is a challenge. The beauty of HITI technology is that it is adaptable to any targeted genome engineering system, not just CRISPR-Cas9. Thus, as the safety and efficiency of these systems improve, so too will the usefulness of HITI.

“We now have a technology that allows us to modify the DNA of non-dividing cells, to fix broken genes in the brain, heart and liver,” says Izpisua Belmonte. “It allows us for the first time to be able to dream of curing diseases that we couldn’t before, which is exciting.”


Story Source:

Materials provided by Salk Institute. Note: Content may be edited for style and length.

Artificial intelligence to generate new cancer drugs on demand

December 18, 2016

687474703a2f2f6d7573796f6b752e6769746875622e696f2f696d616765732f706f73742f323031362d30382d30392f73656d692d737570657276697365642f64696d5f726564756374696f6e2f6c6162656c65645f7a5f313030302e706e67

Summary:

  • Clinical trial failure rates for small molecules in oncology exceed 94% for molecules previously tested in animals and the costs to bring a new drug to market exceed $2.5 billion
  • There are around 2,000 drugs approved for therapeutic use by the regulators with very few providing complete cures
  • Advances in deep learning demonstrated superhuman accuracy in many areas and are expected to transform industries, where large amounts of training data is available
  • Generative Adversarial Networks (GANs), a new technology introduced in 2014 represent the “cutting edge” in artificial intelligence, where new images, videos and voice can be produced by the deep neural networks on demand
  • Here for the first time we demonstrate the application of Generative Adversarial Autoencoders (AAEs), a new type of GAN, for generation of molecular fingerprints of molecules that kill cancer cells at specific concentrations
  • This work is the proof of concept, which opens the door for the cornucopia of meaningful molecular leads created according to the given criteria
  • The study was published in Oncotarget and the open-access manuscript is available in the Advance Open Publications section
  • Authors speculate that in 2017 the conservative pharmaceutical industry will experience a transformation similar to the automotive industry with deep learned drug discovery pipelines integrated into the many business processes
  • The extension of this work will be presented at the “4th Annual R&D Data Intelligence Leaders Forum” in Basel, Switzerland, Jan 24-26th, 2017

Thursday, 22nd of December Baltimore, MD – Scientists at the Pharmaceutical Artificial Intelligence (pharma.AI) group of Insilico Medicine, Inc, today announced the publication of a seminal paper demonstrating the application of generative adversarial autoencoders (AAEs) to generating new molecular fingerprints on demand. The study was published in Oncotarget on 22nd of December, 2016. The study represents the proof of concept for applying Generative Adversarial Networks (GANs) to drug discovery. The authors significantly extended this model to generate new leads according to multiple requested characteristics and plan to launch a comprehensive GAN-based drug discovery engine producing promising therapeutic treatments to significantly accelerate pharmaceutical R&D and improve the success rates in clinical trials.

Since 2010 deep learning systems demonstrated unprecedented results in image, voice and text recognition, in many cases surpassing human accuracy and enabling autonomous driving, automated creation of pleasant art and even composition of pleasant music.

GAN is a fresh direction in deep learning invented by Ian Goodfellow in 2014. In recent years GANs produced extraordinary results in generating meaningful images according to the desired descriptions. Similar principles can be applied to drug discovery and biomarker development. This paper represents a proof of concept of an artificially-intelligent drug discovery engine, where AAEs are used to generate new molecular fingerprints with the desired molecular properties.

“At Insilico Medicine we want to be the supplier of meaningful, high-value drug leads in many disease areas with high probability of passing the Phase I/II clinical trials. While this publication is a proof of concept and only generates the molecular fingerprints with the very basic molecular properties, internally we can now generate entire molecular structures according to a large number of parameters. These structures can be fed into our multi-modal drug discovery pipeline, which predicts therapeutic class, efficacy, side effects and many other parameters. Imagine an intelligent system, which one can instruct to produce a set of molecules with specified properties that kill certain cancer cells at a specified dose in a specific subset of the patient population, then predict the age-adjusted and specific biomarker-adjusted efficacy, predict the adverse effects and evaluate the probability of passing the human clinical trials. This is our big vision”, said Alex Zhavoronkov, PhD, CEO of Insilico Medicine, Inc.

Previously, Insilico Medicine demonstrated the predictive power of its discovery systems in the nutraceutical industry. In 2017 Life Extension will launch a range of natural products developed using Insilico Medicine’s discovery pipelines. Earlier this year the pharmaceutical artificial intelligence division of Insilico Medicine published several seminal proof of concept papers demonstrating the applications of deep learning to drug discovery, biomarker development and aging research. Recently the authors published a tool in Nature Communications, which is used for dimensionality reduction in transcriptomic data for training deep neural networks (DNNs). The paper published in Molecular Pharmaceutics demonstrating the applications of deep neural networks for predicting the therapeutic class of the molecule using the transcriptional response data received the American Chemical Society Editors’ Choice Award. Another paper demonstrating the ability to predict the chronological age of the patient using a simple blood test, published in Aging, became the second most popular paper in the journal’s history.

“Generative AAE is a radically new way to discover drugs according to the required parameters. At Pharma.AI we have a comprehensive drug discovery pipeline with reasonably accurate predictors of efficacy and adverse effects that work on the structural data and transcriptional response data and utilize the advanced signaling pathway activation analysis and deep learning. We use this pipeline to uncover the prospective uses of molecules, where these types of data are available. But the generative models allow us to generate completely new molecular structures that can be run through our pipelines and then tested in vitro and in vivo. And while it is too early to make ostentatious claims before our predictions are validated in vivo, it is clear that generative adversarial networks coupled with the more traditional deep learning tools and biomarkers are likely to transform the way drugs are discovered”, said Alex Aliper, president, European R&D at the Pharma.AI group of Insilico Medicine.

Recent advances in deep learning and specifically in generative adversarial networks have demonstrated surprising results in generating new images and videos upon request, even when using natural language as input. In this study the group developed a 7-layer AAE architecture with the latent middle layer serving as a discriminator. As an input and output AAE uses a vector of binary fingerprints and concentration of the molecule. In the latent layer the group introduced a neuron responsible for tumor growth inhibition index, which when negative it indicates the reduction in the number of tumour cells after the treatment. To train AAE, the authors used the NCI-60 cell line assay data for 6252 compounds profiled on MCF-7 cell line. The output of the AAE was used to screen 72 million compounds in PubChem and select candidate molecules with potential anti-cancer properties.

“I am very happy to work alongside the Pharma.AI scientists at Insilico Medicine on getting the GANs to generate meaningful leads in cancer and, most importantly, age-related diseases and aging itself. This is humanity’s most pressing cause and everyone in machine learning and data science should be contributing. The pipelines these guys are developing will play a transformative role in the pharmaceutical industry and in extending human longevity and we will continue our collaboration and invite other scientists to follow this path”, said Artur Kadurin, the head of the segmentation group at Mail.Ru, one of the largest IT companies in Eastern Europe and the first author on the paper.

###

About Insilico Medicine, Inc

Insilico Medicine, Inc. is a bioinformatics company located at the Emerging Technology Centers at the Johns Hopkins University Eastern campus in Baltimore with Research and Development (“R&D”) resources in Belgium, UK and Russia hiring talent through hackathons and competitions. The company utilizes advances in genomics, big data analysis, and deep learning for in silico drug discovery and drug repurposing for aging and age-related diseases. The company pursues internal drug discovery programs in cancer, Parkinson’s Disease, Alzheimer’s Disease, sarcopenia, and geroprotector discovery. Through its Pharma.AI division, the company provides advanced machine learning services to biotechnology, pharmaceutical, and skin care companies. Brief company video: https://www.youtube.com/watch?v=l62jlwgL3v8

From: https://eurekalert.org/pub_releases/2016-12/imi-ait122016.php