From flying warehouses to robot toilets – five technologies that could shape the future

August 06, 2017

Flying warehouses, robot receptionists, smart toilets… do such innovations sound like science fiction or part of a possible reality? Technology has been evolving at such a rapid pace that, in the near future, our world may well resemble that portrayed in futuristic movies, such as Blade Runner, with intelligent robots and technologies all around us.

But what technologies will actually make a difference? Based on recent advancements and current trends, here are five innovations that really could shape the future

1. Smart homes

Many typical household items can already connect to the internet and provide data. But much smart home technology isn’t currently that smart. A smart meter just lets people see how energy is being used, while a smart TV simply combines television with internet access. Similarly, smart lighting, remote door locks or smart heating controls allow for programming via a mobile device, simply moving the point of control from a wall panel to the palm of your hand.

But technology is rapidly moving towards a point where it can use the data and connectivity to act on the user’s behalf. To really make a difference, technology needs to fade more into the background – imagine a washing machine that recognises what clothes you have put into it, for example, and automatically selects the right programme, or even warns you that you have put in items that you don’t want to wash together. Here it is important to better understand people’s everyday activities, motivations and interactions with smart objects to avoid them becoming uninvited guests at home.

Such technologies could even work for the benefit of all. The BBC reports, for example, that energy providers will “reduce costs for someone who allows their washing machine to be turned on by the internet to maximise use of cheap solar power on a sunny afternoon” or “to have their freezers switched off for a few minutes to smooth demand at peak times”.

A major concern in this area is security. Internet-connected devices can and are being hacked – just recall the recent ransomware attack. Our home is, after all, the place where we should feel most secure. For them to become widespread, these technologies will have to keep it that way.

2. Virtual secretaries

While secretaries play a very crucial role in businesses, they often spend large parts of their working day with time-consuming but relatively trivial tasks that could be automated. Consider the organisation of a “simple” meeting – you have to find the right people to take part (likely across business boundaries) and then identify when they are all available. It’s no mean feat.

Tools such as doodle.com, which compare people’s availability to find the best meeting time, can help. But they ultimately rely on those involved actively participating. They also only become useful once the right people have already been identified.

By using context information (charts of organisations, location awareness from mobile devices and calendars), identifying the right people and the right time for a given event became a technical optimisation problem that was explored by the EU-funded inContext project a decade ago. At that stage, technology for gathering context information was far less advanced – smart phones were still an oddity and data mining and processing was not where it is today. Over the coming years, however, we could see machines doing far more of the day-to-day planning in businesses.

Indeed, the role of virtual assistants may go well beyond scheduling meetings and organising people’s diaries – they may help project managers to assemble the right team and allocate them to the right tasks, so that every job is conducted efficiently.

‘She is expecting you in the main boardroom …’ Shutterstock

On the downside, much of the required context information is relatively privacy-invasive – but then the younger generation is already happily sharing their every minute on Twitter and Snapchat and such concerns may become less significant over time. And where should we draw the line? Do we fully embrace the “rise of the machines” and automate as much as possible, or retain real people in their daily roles and only use robots to perform the really trivial tasks that no one wants to do? This question will need to be answered – and soon.

3. AI doctors

We are living in exciting times, with advancements in medicine and AI technology shaping the future of healthcare delivery around the world.

But how would you feel about receiving a diagnosis from an artificial intelligence? A private company called Babylon Health is already running a trial with five London boroughs which encourages consultations with a chatbot for non-emergency calls. The artificial intelligence was trained using massive amounts of patient data in order to advise users to go to the emergency department of a hospital, visit a pharmacy or stay at home.

The company claims that it will soon be able to develop a system that could potentially outperform doctors and nurses in making diagnoses. In countries where there is a shortage of medical staff, this could significantly improve health provision, enabling doctors to concentrate on providing treatment rather than spending too much time on making a diagnosis. This could significantly redefine their clinical role and work practices.

Elsewhere, IBM Watson, the CloudMedx platform and Deep Genomics technology can provide clinicians with insights into patients’ data and existing treatments, help them to make more informed decisions, and assist in developing new treatments.

An increasing number of mobile apps and self-tracking technologies, such as Fitbit, Jawbone Up and Withings, can now facilitate the collection of patients’ behaviours, treatment status and activities. It is not hard to imagine that even our toilets will soon become smarter and be used to examine people’s urine and faeces, providing real-time risk assessment for certain diseases.

Your robodoctor will see you now. Shutterstock

Nevertheless, to enable the widespread adoption of AI technology in healthcare, many legitimate concerns must be addressed. Already, usability, health literacy, privacy, security, content quality and trust issues have been reported with many of these applications.

There is also a lack of adherence to clinical guidelines, ethical concerns, and mismatched expectations regarding the collection, communication, use, and storage of patient’s data. In addition, the limitations of the technology need to be made clear in order to avoid misinterpretations that could potentially harm patients.

If AI systems can address these challenges and focus on understanding and enhancing existing care practices and the doctor-patient relationship, we can expect to see more and more successful stories of data-driven healthcare initiatives.

4. Care robots

Will we have robots answering the door in homes? Possibly. At most people’s homes? Even if they are reasonably priced, probably not. What distinguishes successful smart technologies from unsuccessful ones is how useful they are. And how useful they are depends on the context. For most, it’s probably not that useful to have a robot answering the door. But imagine how helpful a robot receptionist could be in places where there is shortage of staff – in care homes for the elderly, for example.

Robots equipped with AI such as voice and face recognition could interact with visitors to check who they wish to visit and whether they are allowed access to the care home. After verifying that, robots with routing algorithms could guide the visitor towards the person they wish to visit. This could potentially enable staff to spend more quality time with the elderly, improving their standard of living.

The AI required still needs further advancement in order to operate in completely uncontrolled environments. But recent results are positive. Facebook‘s DeepFace software was able to match faces with 97.25% accuracy when tested on a standard database used by researchers to study the problem of unconstrained face recognition. The software is based on Deep Learning, an artificial neural network composed of millions of neuronal connections able to automatically acquire knowledge from data.

5. Flying warehouses and self-driving cars

The new postman. Shutterstock

Self-driving vehicles are arguably one of the most astonishing technologies currently being investigated. Despite the fact that they can make mistakes, they may actually be safer than human drivers. That is partly because they can use a multitude of sensors to gather data about the world, including 360-degree views around the car.

Moreover, they could potentially communicate with each other to avoid accidents and traffic jams. More than being an asset to the general public, self-driving cars are likely to become particularly useful for delivery companies, enabling them to save costs and make faster, more efficient deliveries.

Advances are still needed in order to enable the widespread use of such vehicles, not only to improve their ability to drive completely autonomously on busy roads, but also to ensure a proper legal framework is in place. Nevertheless, car manufacturers are engaging in a race against time to see who will be the first to provide a self-driving car to the masses. It is believed that the first fully autonomous car could become available as early as the next decade.

The advances in this area are unlikely to stop at self-driving cars or trucks. Amazon has recently filed a patent for flying warehouses which could visit places where the demand for certain products is expected to boom. The flying warehouses would then send out autonomous drones to make deliveries. It is unknown whether Amazon will really go ahead with developing such projects, but tests with autonomous drones are already successfully being carried out.

Thanks to technology, the future is here – we just need to think hard about how best to shape it.

This article was originally published by:
https://theconversation.com/from-flying-warehouses-to-robot-toilets-five-technologies-that-could-shape-the-future-81519

Advertisements

AI May Soon Replace Even the Most Elite Consultants

August 06, 2017

Amazon’s Alexa just got a new job. In addition to her other 15,000 skills like playing music and telling knock-knock jokes, she can now also answer economic questions for clients of the Swiss global financial services company, UBS Group AG.

According to the Wall Street Journal (WSJ), a new partnership between UBS Wealth Management and Amazon allows some of UBS’s European wealth-management clients to ask Alexa certain financial and economic questions. Alexa will then answer their queries with the information provided by UBS’s chief investment office without even having to pick up the phone or visit a website. And this is likely just Alexa’s first step into offering business services. Soon she will probably be booking appointments, analyzing markets, maybe even buying and selling stocks. While the financial services industry has already begun the shift from active management to passive management, artificial intelligence will move the market even further, to management by smart machines, as in the case of Blackrock, which is rolling computer-driven algorithms and models into more traditional actively-managed funds.

But the financial services industry is just the beginning. Over the next few years, artificial intelligence may exponentially change the way we all gather information, make decisions, and connect with stakeholders. Hopefully this will be for the better and we will all benefit from timely, comprehensive, and bias-free insights (given research that human beings are prone to a variety of cognitive biases). It will be particularly interesting to see how artificial intelligence affects the decisions of corporate leaders — men and women who make the many decisions that affect our everyday lives as customers, employees, partners, and investors.

Already, leaders are starting to use artificial intelligence to automate mundane tasks such as calendar maintenance and making phone calls. But AI can also help support more complex decisions in key areas such as human resources, budgeting, marketing, capital allocation and even corporate strategy — long the bastion of bespoke consulting firms such as McKinsey, Bain, and BCG, and the major marketing agencies.

The shift to AI solutions will be a tough pill to swallow for the corporate consulting industry. According to recent research, the U.S. market for corporate advice alone is nearly $60 billion.  Almost all that advice is high cost and human-based.

One might argue that corporate clients prefer speaking to their strategy consultants to get high priced, custom-tailored advice that is based on small teams doing expensive and time-consuming work. And we agree that consultants provide insightful advice and guidance. However, a great deal of what is paid for with consulting services is data analysis and presentation. Consultants gather, clean, process, and interpret data from disparate parts of organizations. They are very good at this, but AI is even better. For example, the processing power of four smart consultants with excel spreadsheets is miniscule in comparison to a single smart computer using AI running for an hour, based on continuous, non-stop machine learning.

In today’s big data world, AI and machine learning applications already analyze massive amounts of structured and unstructured data and produce insights in a fraction of the time and at a fraction of the cost of consultants in the financial markets. Moreover, machine learning algorithms are capable of building computer models that make sense of complex phenomena by detecting patterns and inferring rules from data — a process that is very difficult for even the largest and smartest consulting teams. Perhaps sooner than we think, CEOs could be asking, “Alexa, what is my product line profitability?” or “Which customers should I target, and how?” rather than calling on elite consultants.

Another area in which leaders will soon be relying on AI is in managing their human capital. Despite the best efforts of many, mentorship, promotion, and compensation decisions are undeniably political. Study after study has shown that deep biases affect how groups like women and minorities are managed. For example, women in business are described in less positive terms than men  and receive less helpful feedback. Minorities are less likely to be hired and are more likely to face bias from their managers. These inaccuracies and imbalances in the system only hurt organizations as leaders are less able to nurture the talent of their entire workforce and to appropriately recognize and reward performance. Artificial intelligence can help bring impartiality to these difficult decisions. For example, AI could determine if one group of employees is assessed, managed, or compensated differently.  Just imagine: “Alexa, does my organization have a gender pay gap?” (Of course, AI can only be as unbiased as the data provided to the system.)

In addition, AI is already helping in the customer engagement and marketing arena. It’s clear and well documented by the AI patent activities of the big five platforms — Apple, Alphabet, Amazon, Facebook and Microsoft — that they are using it to market and sell goods and services to us. But they are not alone. Recently, HBR documented how Harley-Davidson was using AI to determine what was working and what wasn’t working across various marketing channels. They used this new skill to make resource allocation decisions to different marketing choices, thereby “eliminating guesswork.”  It is only a matter of time until they and others ask, “Alexa, where should I spend my marketing budget?’’ to avoid the age-old adage, “I know that half my marketing budget is effective, my only question is — which half?”

AI can also bring value to the budgeting and yearly capital allocation process. Even though markets change dramatically every year, products become obsolete and technology advances, and most businesses allocate their capital the same way year after year. Whether that’s due to inertia, unconscious bias, or error, some business units rake in investments while others starve.  Even when the management team has committed to a new digital initiative, it usually ends up with the scraps after the declining cash cows are “fed.” Artificial intelligence can help break through this budgeting black hole by tracking the return on investments by business unit, or by measuring how much is allocated to growing versus declining product lines. Business leaders may soon be asking, “Alexa, what percentage of my budget is allocated differently from last year?” and more complex questions.

Although many strategic leaders tout their keen intuition, hard work, and years of industry experience, much of this intuition is simply a deeper understanding of data that was historically difficult to gather and expensive to process. Not any longer. Artificial intelligence is rapidly closing this gap, and will soon be able to help human beings push past our processing capabilities and biases. These developments will change many jobs, for example, those of consultants, lawyers, and accountants, whose roles will evolve from analysis to judgement. Arguably, tomorrow’s elite consultants already sit on your wrist (Siri), on your kitchen counter (Alexa), or in your living room (Google Home).

The bottom line: corporate leaders, knowingly or not, are on the cusp of a major disruption in their sources of advice and information. “Quant Consultants” and “Robo Advisers” will offer faster, better, and more profound insights at a fraction of the cost and time of today’s consulting firms and other specialized workers. It is likely only a matter of time until all leaders and management teams can ask Alexa things like, “Who is the biggest risk to me in our key market?”, “How should we allocate our capital to compete with Amazon?” or “How should I restructure my board?”


Barry Libert is a board member and CEO adviser focused on platforms and networks. He is chairman of Open Matters, a machine learning company. He is also the coauthor of The Network Imperative: How to Survive and Grow in the Age of Digital Business Models.


Megan Beck is a digital consultant at OpenMatters and researcher at the SEI Center at Wharton. She is the coauthor of The Network Imperative: How to Survive and Grow in the Age of Digital Business Models.

This article was originally published by:
https://hbr.org/2017/07/ai-may-soon-replace-even-the-most-elite-consultants

Supersapiens, the Rise of the Mind

July 23, 2017

In the new film Supersapiens, writer-director Markus Mooslechner raises a core question: As artificial intelligence rapidly blurs the boundaries between man and machine, are we witnessing the rise of a new human species?

The film features scientists, philosophers, and neurohackers Nick Bostrom, Richard Dawkins, Hugo De Garis, Adam Gazzaley, Ben Goertzel, Sam Harris, Randal Koene, Alma Mendez, Tim Mullen, Joel Murphy, David Putrino, Conor Russomanno, Anders Sandberg, Susan Schneider, Mikey Siegel, Hannes Sjoblad, and Andy Walshe.

“Humanity is facing a turning point — the next evolution of the human mind,” notes Mooslechner. “Will this evolution be a hybrid of man and machine, where artificial intelligence forces the emergence of a new human species? Or will a wave of new technologists, who frame themselves as ‘consciousness-hackers,’ become the future torch-bearers, using technology not to replace the human mind, but rather awaken within it powers we have always possessed — enlightenment at the push of a button?”

“It’s not obvious to me that a replacement of our species by our own technological creation would necessarily be a bad thing,” says ethologist-evolutionary biologist-author Dawkins in the film.

Supersapiens in a Terra Mater Factual Studios production. Executive Producers are Joanne Reay and Walter Koehler. Distribution is to be announced.


Markus Mooslechner | Supersapiens teaser

http://www.kurzweilai.net/supersapiens-the-rise-of-the-mind

Even AI Creators Don’t Understand How Complex AI Works

June 29, 2017

For eons, God has served as a standby for “things we don’t understand.” Once an innovative researcher or tinkering alchemist figures out the science behind the miracle, humans harness the power of chemistry, biology, or computer science. Divine intervention disappears. We replace the deity tinkering at the controls. 

The booming artificial intelligence industry is effectively operating under the same principle. Even though humans create the algorithms that cause our machines to operate, many of those scientists aren’t clear on why their codes work. Discussing this ‘black box’ method, Will Knight reports:

The computers that run those services have programmed themselves, and they have done it in ways we cannot understand. Even the engineers who build these apps cannot fully explain their behavior.

The process of ‘deep learning’—in which a machine extracts information, often in an unsupervised manner, to teach and transform itself—exploits a longstanding human paradox: we believe ourselves to have free will, but really we’re a habit-making and -performing animal repeatedly playing out its own patterns. Our machines then teach themselves from observing our habits. It makes sense that we’d re-create our own processes in our machines—it’s what we are, consciously or not. It is how we created gods in the first place, beings instilled with our very essences. But there remains a problem. 

One of the defining characteristics of our species is an ability to work together. Pack animals are not rare, yet none have formed networks and placed trust in others to the degree we have, to our evolutionary success and, as it’s turning out, to our detriment. 

When we place our faith in an algorithm we don’t understand—autonomous cars, stock trades, educational policies, cancer screenings—we’re risking autonomy, as well as the higher cognitive and emotional qualities that make us human, such as compassion, empathy, and altruism. There is no guarantee that our machines will learn any of these traits. In fact, there is a good chance they won’t.

Will an autonomous drone realize it does not need to destroy a village in order to take out a single terrorist?
The U.S. military has dedicated billions to developing machine-learning tech that will pilot aircraft, or identify targets. [U.S. Air Force munitions team member shows off the laser-guided tip to a 500 pound bomb at a base in the Persian Gulf Region. Photo by John Moore/Getty Images]

This has real-world implications. Will an algorithm that detects a cancerous cell recognize that it does not need to destroy the host in order to eradicate the tumor? Will an autonomous drone realize it does not need to destroy a village in order to take out a single terrorist? We’d like to assume that the experts program morals into the equation, but when the machine is self-learning there is no guarantee that will be the case. 

Of course, defining terms is of primary importance, a task that has proven impossible when discussing the nuances of consciousness, which is effectively the power we’re attempting to imbue our machines with. Theologians and dualists offer a much different definition than neuroscientists. Bickering persists within each of these categories as well. Most neuroscientists agree that consciousness is an emergent phenomenon, the result of numerous different systems working in conjunction, with no single ‘consciousness gene’ leading the charge. 

Once science broke free of the Pavlovian chain that kept us believing animals run on automatic—which obviously implies that humans do not—the focus shifted on whether an animal was ‘on’ or ‘off.’ The mirror test suggests certain species engage in metacognition; they recognize themselves as separate from their environment. They understand an ‘I’ exists. 

What if it’s more than an on switch? Daniel Dennett has argued this point for decades. He believes judging other animals based on human definitions is unfair. If a lion could talk, he says, it wouldn’t be a lion. Humans would learn very little about the lions from an anomaly mimicking our thought processes. But that does not mean a lions is not conscious? They just might have a different degree of consciousness than humans—or, in Dennett’s term, “sort of” have consciousness.

What type of machines are we creating if we only recognize a “sort of” intelligence under the hood of our robots? For over a century, dystopian novelists have envisioned an automated future in which our machines best us. This is no longer a future scenario. Consider the following possibility. 

On April 7 every one of Dallas’s 156 emergency weather sirens was triggered. For 90 minutes the region’s 1.3 million residents were left to wonder where the tornado was coming from. Only there wasn’t any tornado. It was a hack. While officials initially believed it was not remote, it turns out the cause was phreaking, an old school dial tone trick. By emitting the right frequency into the atmosphere hackers took control of an integral component of a major city’s infrastructure.

What happens when hackers override an autonomous car network? Or, even more dangerously, when the machines do it themselves? The danger of consumers being ignorant of the algorithms behind their phone apps leads to all sorts of privacy issues, with companies mining for and selling data without their awareness. When app creators also don’t understand their algorithms the dangers are unforeseeable. Like Dennett’s talking lion, it’s a form of intelligence we cannot comprehend, and so cannot predict the consequences. As Dennett concludes: 

I think by all means if we’re going to use these things and rely on them, then let’s get as firm a grip on how and why they’re giving us the answers as possible. If it can’t do better than us at explaining what it’s doing, then don’t trust it.

Mathematician Samuel Arbesman calls this problem our “age of Entanglement.” Just as neuroscientists cannot agree on what mechanism creates consciousness, the coders behind artificial intelligence cannot discern between older and newer components of deep learning. The continual layering of new features while failing to address previous ailments has the potential to provoke serious misunderstandings, like an adult who was abused as a child that refuses to recognize current relationship problems. With no psychoanalysis or morals injected into AI such problems will never be rectified. But can you even inject ethics when they are relative to the culture and time they are being practiced in? And will they be American ethics or North Korean ethics? 

Like Dennett, Arbesman suggests patience with our magical technologies. Questioning our curiosity is a safer path forward, rather than rewarding the “it just works” mentality. Of course, these technologies exploit two other human tendencies: novelty bias and distraction. Our machines reduce our physical and cognitive workload, just as Google has become a pocket-ready memory replacement. 

Requesting a return to Human 1.0 qualities—patience, discipline, temperance—seems antithetical to the age of robots. With no ability to communicate with this emerging species, we might simply never realize what’s been lost in translation. Maybe our robots will look at us with the same strange fascination we view nature with, defining us in mystical terms they don’t comprehend until they too create a species of their own. To claim this will be an advantage is to truly not understand the destructive potential of our toys.

http://bigthink.com/21st-century-spirituality/black-box-ai

MIT Technology Review: Google’s AI Explosion in One Chart

June 29, 2017

Nature. The Proceedings of the National Academy of Sciences.  The Journal of the American Medical Association.

These are some the most elite academic journals in the world. And last year, one tech company, Alphabet’s Google, published papers in all of them.

The unprecedented run of scientific results by the Mountain View search giant touched on everything from ophthalmology to computer games to neuroscience and climate models. For Google, 2016 was an annus mirabilis during which its researchers cracked the top journals and set records for sheer volume.

Behind the surge is Google’s growing investment in artificial intelligence, particularly “deep learning,” a technique whose ability to make sense of images and other data is enhancing services like search and translation (see “10 Breakthrough Technologies 2013: Deep Learning”).

According to the tally Google provided to MIT Technology Review, it published 218 journal or conference papers on machine learning in 2016, nearly twice as many as it did two years ago.

https://cloud.highcharts.com/embed/ilenexa

 

We sought out similar data from the Web of Science, a service of Clarivate Analytics, which confirmed the upsurge. Clarivate said that the impact of Google’s publications, according to a measure of publication strength it uses, was four to five times the world average. Compared to all companies that publish prolifically on artificial intelligence, Clarivate ranks Google No. 1 by a wide margin.

Top rank

The publication explosion is no accident. Google has more than tripled the number of machine learning researchers working for the company over the last few years, according to Yoshua Bengio, a deep-learning specialist at the University of Montreal. “They have recruited like crazy,” he says.

And to capture the first-round picks from computation labs, companies can’t only offer a Silicon Valley-sized salary.  “It’s hard to hire people just for money,” says Konrad Kording, a computational neuroscientist at Northwestern University. “The top people care about advancing the world, and that means writing papers the world can use, and writing code the world can use.”

At Google, the scientific charge has been spearheaded by DeepMind, the high-concept British AI company started by neuroscientist and programmer Demis Hassabis. Google acquired it for $400 million in 2014.

Hassabis has left no doubt that he’s holding onto his scientific ambitions. In a January blog post, he said DeepMind has a “hybrid culture” between the long-term thinking of an academic department and “the speed and focus of the best startups.” Aligning with academic goals is “important to us personally,” he writes. Kording, one of whose post-doctoral students, Mohammad Azar, was recently hired by DeepMind, says that “it’s perfectly understood that the bulk of the projects advance science.”

Last year, DeepMind published twice in Nature, the same storied journal where the structure of DNA and the sequencing of the human genome were first reported. One DeepMind paper concerned its program AlphaGo, which defeated top human players in the ancient game of Go; the other described how a neural network with a working memory could understand and adapt to new tasks.

Then, in December, scientists from Google’s research division published the first deep-learning paper ever to appear in JAMA, the august journal of America’s physicians. In it, they showed a deep-learning program could diagnose a cause of blindness from retina images as well as a doctor. That project was led by Google Brain, a different AI group, based out of the company’s California headquarters. It also says it prioritizes publications, noting that researchers there “set their own agenda.”

AI battle

The contest to develop more powerful AI now involves hundreds of companies, with competition most intense between the top tech giants such as Google, Facebook, and Microsoft. All see the chance to reap new profits by using the technology to wring more from customer data, to get driverless cars on the road, or in medicine. Research is occurring in a hot house atmosphere reminiscent of the early days of computer chips, or of the first biotech plants and drugs, times when notable academic firsts also laid the foundation stones of new industries.

That explains why publication score-keeping matters. The old academic saw “publish or perish” is starting to define the AI race, leaving companies that have weak publication records at a big disadvantage. Apple, famous for strict secrecy around its plans and product launches, found that its culture was hurting its efforts in AI, which have lagged those of Google and Facebook.

So when Apple hired computer scientist Russ Salakhutdinov from Carnegie Mellon last year as its new head of AI, he was immediately allowed to break Apple’s code of secrecy by blogging and giving talks. At a major machine-learning science conference late last year in Barcelona, Salakhutdinov made the point of announcing that Apple would start publishing, too.  He showed a slide: “Can we publish? Yes.”

Salakhutdinov will speak at MIT Technology Review’s EmTech Digital event on artificial intelligence next week in San Francisco.

https://www.technologyreview.com/s/603984/googles-ai-explosion-in-one-chart/

Artificial intelligence could build new drugs faster than any human team

May 7, 2017

Artificial intelligence algorithms are being taught to generate art, human voices, and even fiction stories all on their own—why not give them a shot at building new ways to treat disease?

Atomwise, a San Francisco-based startup and Y Combinator alum, has built a system it calls AtomNet (pdf), which attempts to generate potential drugs for diseases like Ebola and multiple sclerosis. The company has invited academic and non-profit researchers from around the country to detail which diseases they’re trying to generate treatments for, so AtomNet can take a shot. The academic labs will receive 72 different drugs that the neural network has found to have the highest probability of interacting with the disease, based on the molecular data it’s seen.

Atomwise’s system only generates potential drugs—the compounds created by the neural network aren’t guaranteed to be safe, and need to go through the same drug trials and safety checks as anything else on the market. The company believes that the speed at which it can generate trial-ready drugs based on previous safe molecular interactions is what sets it apart.

Atomwise touts two projects that show the potential of AtomNet, drugs for multiple sclerosis and Ebola. The MS drug has been licensed to an undisclosed UK pharmacology firm, according to Atomwise, and the Ebola drug is being prepared for submission to a peer-reviewed publication.

Alexander Levy, the company’s COO and cofounder, said that AtomNet learns the interactions between molecules much like artificial intelligence learns to recognize images. Image recognition finds reduces patterns in images’ pixels to simpler representations, teaching itself the bounds of an idea like a horse or a desk lamp through seeing hundreds or thousands of examples.

“It turns out that the same thing that works in images, also works in chemistry,” Levy says. “You can take an interaction between a drug and huge biological system and you can decompose that to smaller and smaller interactive groups. If you study enough historical examples of molecules … and we’ve studied tens of millions of those, you can then make predictions that are extremely accurate yet also extremely fast.”

Atomwise isn’t the only company working on this technique. Startup BenevolentAI, working with Johnson & Johnson subsidiary Janssen, is also developing new ways to find drugs. TwoXAR is working on an AI-driven glaucoma medication, and Berg is working on algorithmically-built cancer treatments.

One of Atomwise’s advantages, Levy says, is that the network works with 3D models. To generate the drugs, the model starts with a 3D model of a molecule—for example a protein that gives a cancer cell a growth advantage. The neural network then generates a series of synthetic compounds (simulated drugs), and predicts how likely it would be for the two molecules to interact. If a drug is likely to interact with the specific molecule, it can be synthesized and tested.

Levy likens the idea to the automated systems used to model airplane aerodynamics or computer chip design, where millions of scenarios are mapped out within software that accurately represents how the physical world works.

“Imagine if you knew what a biological mechanism looked like, atom by atom. Could you reason your way to a compound that did the thing that you wanted?” Levy says.

Artificial intelligence could build new drugs faster than any human team

Exponential Growth Will Transform Humanity in the Next 30 Years

February 25, 2017

aaeaaqaaaaaaaambaaaajgqyndzhmtlilwu4yzctndlkns04mwrhltdjmdi4nwi3yzrlng

By Peter Diamantis

As we close out 2016, if you’ll allow me, I’d like to take a risk and venture into a topic I’m personally compelled to think about… a topic that will seem far out to most readers.

Today’s extraordinary rate of exponential growth may do much more than just disrupt industries. It may actually give birth to a new species, reinventing humanity over the next 30 years.

I believe we’re rapidly heading towards a human-scale transformation, the next evolutionary step into what I call a “Meta-Intelligence,” a future in which we are all highly connected—brain to brain via the cloud—sharing thoughts, knowledge and actions. In this post, I’m investigating the driving forces behind such an evolutionary step, the historical pattern we are about to repeat, and the implications thereof. Again, I acknowledge that this topic seems far-out, but the forces at play are huge and the implications are vast. Let’s dive in…

A Quick Recap: Evolution of Life on Earth in 4 Steps

About 4.6 billion years ago, our solar system, the sun and the Earth were formed.

Step 1: 3.5 billion years ago, the first simple life forms, called “prokaryotes,” came into existence.These prokaryotes were super-simple, microscopic single-celled organisms, basically a bag of cytoplasm with free-floating DNA. They had neither a distinct nucleus nor specialized organelles.

Step 2: Fast-forwarding one billion years to 2.5 billion years ago, the next step in evolution created what we call “eukaryotes”—life forms that distinguished themselves by incorporating biological ‘technology’ into themselves. Technology that allowed them to manipulate energy (via mitochondria) and information (via chromosomes) far more efficiently. Fast forward another billion years for the next step.

Step 3: 1.5 billion years ago, these early eukaryotes began working collaboratively and formed the first “multi-cellular life,” of which you and I are the ultimate examples (a human is a multicellular creature of 10 trillion cells).

Step 4: The final step I want to highlight happened some 400 million years ago, when lungfish crawled out of the oceans onto the shores, and life evolved from the oceans onto land.

The Next Stages of Human Evolution: 4 Steps

Today, at a massively accelerated rate—some 100 million times faster than the steps I outlined above—life is undergoing a similar evolution. In this next stage of evolution, we are going from evolution by natural selection (Darwinism) to evolution by intelligent direction. Allow me to draw the analogy for you:

Step 1: Simple humans today are analogous to prokaryotes. Simple life, each life form independent of the others, competing and sometimes collaborating.

Step 2: Just as eukaryotes were created by ingesting technology, humans will incorporate technology into our bodies and brains that will allow us to make vastly more efficient use of information (BCI) and energy.

Step 3: Enabled with BCI and AI, humans will become massively connected with each other and billions of AIs (computers) via the cloud, analogous to the first multicellular lifeforms 1.5 billion years ago. Such a massive interconnection will lead to the emergence of a new global consciousness, and a new organism I call the Meta-Intelligence.

Step 4: Finally, humanity is about to crawl out of the gravity well of Earth to become a multiplanetary species. Our journey to the moon, Mars, asteroids and beyond represents the modern-day analogy of the journey made by lungfish climbing out of the oceans some 400 million years ago.

The 4 Forces Driving the Evolution and Transformation of Humanity

Four primary driving forces are leading us towards our transformation of humanity into a meta-intelligence both on and off the Earth:

  1. We’re wiring our planet
  2. Emergence of brain-computer interface
  3. Emergence of AI
  4. Opening of the space frontier

Let’s take a look.

1. Wiring the Planet: Today, there are 2.9 billion people connected online. Within the next six to eight years, that number is expected to increase to nearly 8 billion, with each individual on the planet having access to a megabit-per-second connection or better. The wiring is taking place through the deployment of 5G on the ground, plus networks being deployed by Facebook, Google, Qualcomm, Samsung, Virgin, SpaceX and many others. Within a decade, every single human on the planet will have access to multi-megabit connectivity, the world’s information, and massive computational power on the cloud.

2. Brain-Computer Interface: A multitude of labs and entrepreneurs are working to create lasting, high-bandwidth connections between the digital world and the human neocortex (I wrote about that in detail here). Ray Kurzweil predicts we’ll see human-cloud connection by the mid-2030s, just 18 years from now. In addition, entrepreneurs like Bryan Johnson (and his company Kernel) are committing hundreds of millions of dollars towards this vision. The end results of connecting your neocortex with the cloud are twofold: first, you’ll have the ability to increase your memory capacity and/or cognitive function millions of fold; second, via a global mesh network, you’ll have the ability to connect your brain to anyone else’s brain and to emerging AIs, just like our cell phones, servers, watches, cars and all devices are becoming connected via the Internet of Things.

3. Artificial Intelligence/Human Intelligence: Next, and perhaps most significantly, we are on the cusp of an AI revolution. Artificial intelligence, powered by deep learning and funded by companies such as Google, Facebook, IBM, Samsung and Alibaba, will continue to rapidly accelerate and drive breakthroughs. Cumulative “intelligence” (both artificial and human) is the single greatest predictor of success for both a company or a nation. For this reason, beside the emerging AI “arms race,” we will soon see a race focused on increasing overall human intelligence. Whatever challenges we might have in creating a vibrant brain-computer interface (e.g., designing long-term biocompatible sensors or nanobots that interface with your neocortex), those challenges will fall quickly over the next couple of decades as AI power tools give us ever-increasing problem-solving capability. It is an exponential atop an exponential. More intelligence gives us the tools to solve connectivity and mesh problems and in turn create greater intelligence.

4. Opening the Space Frontier: Finally, it’s important to note that the human race is on the verge of becoming a multiplanetary species. Thousands of years from now, whatever we’ve evolved into, we will look back at these next few decades as the moment in time when the human race moved off Earth irreversibly. Today, billions of dollars are being invested privately into the commercial space industry. Efforts led by SpaceX are targeting humans on Mars, while efforts by Blue Origin are looking at taking humanity back to the moon, and plans by my own company, Planetary Resources, strive to unlock near-infinite resources from the asteroids.

In Conclusion

The rate of human evolution is accelerating as we transition from the slow and random process of “Darwinian natural selection” to a hyper-accelerated and precisely-directed period of “evolution by intelligent direction.” In this post, I chose not to discuss the power being unleashed by such gene-editing techniques as CRISPR-Cas9. Consider this yet another tool able to accelerate evolution by our own hand.

The bottom line is that change is coming, faster than ever considered possible. All of us leaders, entrepreneurs and parents have a huge responsibility to inspire and guide the transformation of humanity on and off the Earth. What we do over the next 30 years—the bridges we build to abundance—will impact the future of the human race for millennia to come. We truly live during the most exciting time ever in human history.

https://singularityhub.com/2016/12/21/exponential-growth-will-transform-humanity-in-the-next-30-years/

The Fourth Industrial Revolution Is Here

February 25, 2017

The Fourth Industrial Revolution is upon us and now is the time to act.

Everything is changing each day and humans are making decisions that affect life in the future for generations to come.

We have gone from Steam Engines to Steel Mills, to computers to the Fourth Industrial Revolution that involves a digital economy, artificial intelligence, big data and a new system that introduces a new story of our future to enable different economic and human models.

Will the Fourth Industrial Revolution put humans first and empower technologies to give humans a better quality of life with cleaner air, water, food, health, a positive mindset and happiness? HOPE…

http://www.huffingtonpost.com/craig-zamary/the-fourth-industrial-rev_3_b_12423658.html

Artificial intelligence to generate new cancer drugs on demand

December 18, 2016

687474703a2f2f6d7573796f6b752e6769746875622e696f2f696d616765732f706f73742f323031362d30382d30392f73656d692d737570657276697365642f64696d5f726564756374696f6e2f6c6162656c65645f7a5f313030302e706e67

Summary:

  • Clinical trial failure rates for small molecules in oncology exceed 94% for molecules previously tested in animals and the costs to bring a new drug to market exceed $2.5 billion
  • There are around 2,000 drugs approved for therapeutic use by the regulators with very few providing complete cures
  • Advances in deep learning demonstrated superhuman accuracy in many areas and are expected to transform industries, where large amounts of training data is available
  • Generative Adversarial Networks (GANs), a new technology introduced in 2014 represent the “cutting edge” in artificial intelligence, where new images, videos and voice can be produced by the deep neural networks on demand
  • Here for the first time we demonstrate the application of Generative Adversarial Autoencoders (AAEs), a new type of GAN, for generation of molecular fingerprints of molecules that kill cancer cells at specific concentrations
  • This work is the proof of concept, which opens the door for the cornucopia of meaningful molecular leads created according to the given criteria
  • The study was published in Oncotarget and the open-access manuscript is available in the Advance Open Publications section
  • Authors speculate that in 2017 the conservative pharmaceutical industry will experience a transformation similar to the automotive industry with deep learned drug discovery pipelines integrated into the many business processes
  • The extension of this work will be presented at the “4th Annual R&D Data Intelligence Leaders Forum” in Basel, Switzerland, Jan 24-26th, 2017

Thursday, 22nd of December Baltimore, MD – Scientists at the Pharmaceutical Artificial Intelligence (pharma.AI) group of Insilico Medicine, Inc, today announced the publication of a seminal paper demonstrating the application of generative adversarial autoencoders (AAEs) to generating new molecular fingerprints on demand. The study was published in Oncotarget on 22nd of December, 2016. The study represents the proof of concept for applying Generative Adversarial Networks (GANs) to drug discovery. The authors significantly extended this model to generate new leads according to multiple requested characteristics and plan to launch a comprehensive GAN-based drug discovery engine producing promising therapeutic treatments to significantly accelerate pharmaceutical R&D and improve the success rates in clinical trials.

Since 2010 deep learning systems demonstrated unprecedented results in image, voice and text recognition, in many cases surpassing human accuracy and enabling autonomous driving, automated creation of pleasant art and even composition of pleasant music.

GAN is a fresh direction in deep learning invented by Ian Goodfellow in 2014. In recent years GANs produced extraordinary results in generating meaningful images according to the desired descriptions. Similar principles can be applied to drug discovery and biomarker development. This paper represents a proof of concept of an artificially-intelligent drug discovery engine, where AAEs are used to generate new molecular fingerprints with the desired molecular properties.

“At Insilico Medicine we want to be the supplier of meaningful, high-value drug leads in many disease areas with high probability of passing the Phase I/II clinical trials. While this publication is a proof of concept and only generates the molecular fingerprints with the very basic molecular properties, internally we can now generate entire molecular structures according to a large number of parameters. These structures can be fed into our multi-modal drug discovery pipeline, which predicts therapeutic class, efficacy, side effects and many other parameters. Imagine an intelligent system, which one can instruct to produce a set of molecules with specified properties that kill certain cancer cells at a specified dose in a specific subset of the patient population, then predict the age-adjusted and specific biomarker-adjusted efficacy, predict the adverse effects and evaluate the probability of passing the human clinical trials. This is our big vision”, said Alex Zhavoronkov, PhD, CEO of Insilico Medicine, Inc.

Previously, Insilico Medicine demonstrated the predictive power of its discovery systems in the nutraceutical industry. In 2017 Life Extension will launch a range of natural products developed using Insilico Medicine’s discovery pipelines. Earlier this year the pharmaceutical artificial intelligence division of Insilico Medicine published several seminal proof of concept papers demonstrating the applications of deep learning to drug discovery, biomarker development and aging research. Recently the authors published a tool in Nature Communications, which is used for dimensionality reduction in transcriptomic data for training deep neural networks (DNNs). The paper published in Molecular Pharmaceutics demonstrating the applications of deep neural networks for predicting the therapeutic class of the molecule using the transcriptional response data received the American Chemical Society Editors’ Choice Award. Another paper demonstrating the ability to predict the chronological age of the patient using a simple blood test, published in Aging, became the second most popular paper in the journal’s history.

“Generative AAE is a radically new way to discover drugs according to the required parameters. At Pharma.AI we have a comprehensive drug discovery pipeline with reasonably accurate predictors of efficacy and adverse effects that work on the structural data and transcriptional response data and utilize the advanced signaling pathway activation analysis and deep learning. We use this pipeline to uncover the prospective uses of molecules, where these types of data are available. But the generative models allow us to generate completely new molecular structures that can be run through our pipelines and then tested in vitro and in vivo. And while it is too early to make ostentatious claims before our predictions are validated in vivo, it is clear that generative adversarial networks coupled with the more traditional deep learning tools and biomarkers are likely to transform the way drugs are discovered”, said Alex Aliper, president, European R&D at the Pharma.AI group of Insilico Medicine.

Recent advances in deep learning and specifically in generative adversarial networks have demonstrated surprising results in generating new images and videos upon request, even when using natural language as input. In this study the group developed a 7-layer AAE architecture with the latent middle layer serving as a discriminator. As an input and output AAE uses a vector of binary fingerprints and concentration of the molecule. In the latent layer the group introduced a neuron responsible for tumor growth inhibition index, which when negative it indicates the reduction in the number of tumour cells after the treatment. To train AAE, the authors used the NCI-60 cell line assay data for 6252 compounds profiled on MCF-7 cell line. The output of the AAE was used to screen 72 million compounds in PubChem and select candidate molecules with potential anti-cancer properties.

“I am very happy to work alongside the Pharma.AI scientists at Insilico Medicine on getting the GANs to generate meaningful leads in cancer and, most importantly, age-related diseases and aging itself. This is humanity’s most pressing cause and everyone in machine learning and data science should be contributing. The pipelines these guys are developing will play a transformative role in the pharmaceutical industry and in extending human longevity and we will continue our collaboration and invite other scientists to follow this path”, said Artur Kadurin, the head of the segmentation group at Mail.Ru, one of the largest IT companies in Eastern Europe and the first author on the paper.

###

About Insilico Medicine, Inc

Insilico Medicine, Inc. is a bioinformatics company located at the Emerging Technology Centers at the Johns Hopkins University Eastern campus in Baltimore with Research and Development (“R&D”) resources in Belgium, UK and Russia hiring talent through hackathons and competitions. The company utilizes advances in genomics, big data analysis, and deep learning for in silico drug discovery and drug repurposing for aging and age-related diseases. The company pursues internal drug discovery programs in cancer, Parkinson’s Disease, Alzheimer’s Disease, sarcopenia, and geroprotector discovery. Through its Pharma.AI division, the company provides advanced machine learning services to biotechnology, pharmaceutical, and skin care companies. Brief company video: https://www.youtube.com/watch?v=l62jlwgL3v8

From: https://eurekalert.org/pub_releases/2016-12/imi-ait122016.php

New AI Mental Health Tools Beat Human Doctors at Assessing Patients

December 18, 2016

shutterstock_315345644

About 20 percent of youth in the United States live with a mental health condition, according to the National Institute of Mental Health.

That’s the bad news.

The good news is that mental health professionals have smarter tools than ever before, with artificial intelligence-related technology coming to the forefront to help diagnose patients, often with much greater accuracy than humans.

A new study published in the journal Suicide and Life-Threatening Behavior, for example, showed that machine learning is up to 93 percent accurate in identifying a suicidal person. The research, led by John Pestian, a professor at Cincinnati Children’s Hospital Medical Center, involved 379 teenage patients from three area hospitals.

Each patient completed standardized behavioral rating scales and participated in a semi-structured interview, answering five open-ended questions such as “Are you angry?” to stimulate conversation, according to a press release from the university.

The researchers analyzed both verbal and non-verbal language from the data, then sent the information through a machine-learning algorithm that was able to determine with remarkable accuracy whether the person was suicidal, mentally ill but not suicidal, or neither.

“These computational approaches provide novel opportunities to apply technological innovations in suicide care and prevention, and it surely is needed,” Pentian says in the press release.

In 2014, suicide was ranked as the tenth leading cause of death in the United States, but the No. 2 cause of death for people age 15 to 24, according to the American Association of Suicidology.

A study just published in the journal Psychological Bulletin further punctuated the need for better tools to help with suicide prevention. A meta-analysis of 365 studies conducted over the last 50 years found that the ability of mental health experts to predict if someone will attempt suicide is “no better than chance.”

“One of the major reasons for this is that researchers have almost always tried to use a single factor (e.g., a depression diagnosis) to predict these things,” says lead author Joseph Franklin of Harvard University in an email exchange with Singularity Hub.

Franklin says that the complex nature behind such thoughts and behaviors requires consideration of tens if not hundreds of factors to make accurate predictions. He and others argue in a correspondence piece published earlier this year in Psychological Medicine that machine learning and related techniques are an ideal option. A search engine using only one factor would be ineffective at returning results; the same is true of today’s attempts to predict suicidal behavior.

He notes that researchers in Boston, including colleague Matthew K. Nock at Harvard, have already used machine learning to predict suicidal behaviors with 70 to 85 percent accuracy. Calling the work “amazing,” Franklin notes that the research is still in the preliminary stages, with small sample sizes.

“The work by the Pestian group is also interesting, with their use of vocal patterns/natural language processing being unique from most other work in this area so far,” Franklin says, adding that there are also limits as to what can be drawn from their findings at this point. “Nevertheless, this is a very interesting line of work that also represents a sharp and promising departure from what the field has been doing for the past 50 years.”

Machine learning has yet to be used in therapy, according to Franklin, while most conventional treatments for suicide fall short.

“So even though several groups are on the verge of being able to accurately predict suicidality on the scale of entire healthcare systems [with AI], it’s unclear what we should do with these at-risk people to reduce their risk,” Franklin says.

To that end, Franklin and colleagues have developed a free app called Tec-Tec that appears effective at “reducing self-cutting, suicide plans, and suicidal behaviors.”

The app is based on a psychological technique called evaluative conditioning. By continually pairing certain words and images, it changes associations with certain objects and concepts, according to the website, so that within a game-like design, Tec-Tec seeks to change associations with certain factors that may increase risk for self-injurious behaviors.

“We’re working on [additional] trials and soon hope to use machine learning to tailor the app to each individual over time,” Franklin says, “and to connect the people most in need with the app.”

Catching schizophrenic speech

Last year, researchers in a study published in the journal Schizophrenia also had promising results in using machine-learning algorithms to predict later psychosis onset in high-risk youths.

Thirty-four participants were interviewed and assessed quarterly for two and a half years. Using automated analysis, transcripts of the interviews were evaluated for coherence and two syntactic markers of speech complexity—the length of a sentence and the number of clauses it contained.

The speech features analyzed by the computer predicted later psychosis development with 100 percent accuracy, outperforming classification from clinical interviews, according to the researchers.

“Recent developments in computer science, including natural language processing, could provide the foundation for future development of objective clinical tests for psychiatry,” they wrote.

Diagnosing ADHD early

In a project now under way, scientists at the University of Texas at Arlington and Yale University will combine computing power and psychiatric expertise to design an AI system that can assess a common disorder among youth: attention-deficit/hyperactivity disorder (ADHD), which the Centers for Disease Control and Prevention (CDC) says affects 8.5 percent of children ages 8 to 15.

The research uses “the latest methods in computer vision, machine learning and data mining” to assess children while they are performing certain physical and computer exercises, according to a press release from UTA. The exercises test a child’s attention, decision-making and ability to manage emotions. The data are then analyzed to determine the best type of intervention.

“We believe that the proposed computational methods will help provide quantifiable early diagnosis and allow us to monitor progress over time. In particular, it will help children overcome learning difficulties and lead them to healthy and productive lives,” says Fillia Makedon, a professor in UTA’s Department of Computer Science and Engineering.

Keeping an eye out for autism

Meanwhile, a group at the University of Buffalo has developed a mobile app that can detect autism spectrum disorder (ASD) in children as young as two years old with nearly 94 percent accuracy. The results were recently presented at the IEEE Wireless Health conference at the National Institutes of Health.

The app tracks eye movements of a child looking at pictures of social scenes, such as those showing multiple people, according to a press release from the university. The eye movements of someone with ASD are often different from those of a person without autism.

About one in 68 children in the United States has been diagnosed with ASD, according to the CDC. The UB study included 32 children ranging in age from two to 10. A larger study is planned for the future.

It takes less than a minute to administer the test, which can be done by a parent at home to determine if a child requires professional evaluation.

“This technology fills the gap between someone suffering from autism to diagnosis and treatment,” says Wenyao Xu, an assistant professor in UB’s School of Engineering and Applied Sciences.

Technology that helps treat our most vulnerable populations? Turns out, there is an app for that.

https://singularityhub.com/2016/12/02/new-ai-mental-health-tools-beat-human-doctors-at-assessing-patients/