June 29, 2017
|
The containers are closed and then heated to 100 degrees Celsius (212 degrees Fahrenheit), after which the pure CO2 gas is released into containers that can either be buried underground or used for other purposes. And re-purposing the CO2 is what is so darned neat about the facility.“You can do this over and over again,” Climeworks director Jan Wurzbacher told Fast Company, according to Futurism. “It’s a cyclic process. You saturate with CO2, then you regenerate, saturate, regenerate. You have multiple of these units, and not all of them go in parallel. Some are taking in CO2, some are releasing CO2.”
Storage of CO2 is the third stage of the CCS process – This involves exactly what the word implies, storage. Right now, the primary way of doing this is to inject the COs into a geological formation that would keep it safely underground. Depleted oil and gas fields or deep saline formations have been suggested.Again, Climeworks is re-purposing the captured pure CO2. They are selling containers of carbon dioxide gas to a number of key markets, including food and beverage industries, commercial agriculture, the energy sector and the automotive industry. This atmospheric CO2 can be found in carbonated drinks, in agriculture or for producing carbon-neutral hydrocarbon fuels and materials. Futurism is reporting that Climeworks says that if we are to keep the planet’s temperature from increasing more than 2 degrees Celsius (3.6 degrees Fahrenheit), we will need hundreds of thousands of these carbon capture facilities. But at the same time, this does not mean we should stop trying to lower greenhouse gas emissions. All over the planet, technology is being used to find innovative ways to capture carbon and use it for other purposes. One example – researchers at the University of California, Los Angeles (UCLA), have found a way to turn captured carbon into concrete for use in the building trade.
the top image in your story is a rendering of an air capture from Carbon Engineering, not Clieworks