Exponential Growth Will Transform Humanity in the Next 30 Years

February 25, 2017


By Peter Diamantis

As we close out 2016, if you’ll allow me, I’d like to take a risk and venture into a topic I’m personally compelled to think about… a topic that will seem far out to most readers.

Today’s extraordinary rate of exponential growth may do much more than just disrupt industries. It may actually give birth to a new species, reinventing humanity over the next 30 years.

I believe we’re rapidly heading towards a human-scale transformation, the next evolutionary step into what I call a “Meta-Intelligence,” a future in which we are all highly connected—brain to brain via the cloud—sharing thoughts, knowledge and actions. In this post, I’m investigating the driving forces behind such an evolutionary step, the historical pattern we are about to repeat, and the implications thereof. Again, I acknowledge that this topic seems far-out, but the forces at play are huge and the implications are vast. Let’s dive in…

A Quick Recap: Evolution of Life on Earth in 4 Steps

About 4.6 billion years ago, our solar system, the sun and the Earth were formed.

Step 1: 3.5 billion years ago, the first simple life forms, called “prokaryotes,” came into existence.These prokaryotes were super-simple, microscopic single-celled organisms, basically a bag of cytoplasm with free-floating DNA. They had neither a distinct nucleus nor specialized organelles.

Step 2: Fast-forwarding one billion years to 2.5 billion years ago, the next step in evolution created what we call “eukaryotes”—life forms that distinguished themselves by incorporating biological ‘technology’ into themselves. Technology that allowed them to manipulate energy (via mitochondria) and information (via chromosomes) far more efficiently. Fast forward another billion years for the next step.

Step 3: 1.5 billion years ago, these early eukaryotes began working collaboratively and formed the first “multi-cellular life,” of which you and I are the ultimate examples (a human is a multicellular creature of 10 trillion cells).

Step 4: The final step I want to highlight happened some 400 million years ago, when lungfish crawled out of the oceans onto the shores, and life evolved from the oceans onto land.

The Next Stages of Human Evolution: 4 Steps

Today, at a massively accelerated rate—some 100 million times faster than the steps I outlined above—life is undergoing a similar evolution. In this next stage of evolution, we are going from evolution by natural selection (Darwinism) to evolution by intelligent direction. Allow me to draw the analogy for you:

Step 1: Simple humans today are analogous to prokaryotes. Simple life, each life form independent of the others, competing and sometimes collaborating.

Step 2: Just as eukaryotes were created by ingesting technology, humans will incorporate technology into our bodies and brains that will allow us to make vastly more efficient use of information (BCI) and energy.

Step 3: Enabled with BCI and AI, humans will become massively connected with each other and billions of AIs (computers) via the cloud, analogous to the first multicellular lifeforms 1.5 billion years ago. Such a massive interconnection will lead to the emergence of a new global consciousness, and a new organism I call the Meta-Intelligence.

Step 4: Finally, humanity is about to crawl out of the gravity well of Earth to become a multiplanetary species. Our journey to the moon, Mars, asteroids and beyond represents the modern-day analogy of the journey made by lungfish climbing out of the oceans some 400 million years ago.

The 4 Forces Driving the Evolution and Transformation of Humanity

Four primary driving forces are leading us towards our transformation of humanity into a meta-intelligence both on and off the Earth:

  1. We’re wiring our planet
  2. Emergence of brain-computer interface
  3. Emergence of AI
  4. Opening of the space frontier

Let’s take a look.

1. Wiring the Planet: Today, there are 2.9 billion people connected online. Within the next six to eight years, that number is expected to increase to nearly 8 billion, with each individual on the planet having access to a megabit-per-second connection or better. The wiring is taking place through the deployment of 5G on the ground, plus networks being deployed by Facebook, Google, Qualcomm, Samsung, Virgin, SpaceX and many others. Within a decade, every single human on the planet will have access to multi-megabit connectivity, the world’s information, and massive computational power on the cloud.

2. Brain-Computer Interface: A multitude of labs and entrepreneurs are working to create lasting, high-bandwidth connections between the digital world and the human neocortex (I wrote about that in detail here). Ray Kurzweil predicts we’ll see human-cloud connection by the mid-2030s, just 18 years from now. In addition, entrepreneurs like Bryan Johnson (and his company Kernel) are committing hundreds of millions of dollars towards this vision. The end results of connecting your neocortex with the cloud are twofold: first, you’ll have the ability to increase your memory capacity and/or cognitive function millions of fold; second, via a global mesh network, you’ll have the ability to connect your brain to anyone else’s brain and to emerging AIs, just like our cell phones, servers, watches, cars and all devices are becoming connected via the Internet of Things.

3. Artificial Intelligence/Human Intelligence: Next, and perhaps most significantly, we are on the cusp of an AI revolution. Artificial intelligence, powered by deep learning and funded by companies such as Google, Facebook, IBM, Samsung and Alibaba, will continue to rapidly accelerate and drive breakthroughs. Cumulative “intelligence” (both artificial and human) is the single greatest predictor of success for both a company or a nation. For this reason, beside the emerging AI “arms race,” we will soon see a race focused on increasing overall human intelligence. Whatever challenges we might have in creating a vibrant brain-computer interface (e.g., designing long-term biocompatible sensors or nanobots that interface with your neocortex), those challenges will fall quickly over the next couple of decades as AI power tools give us ever-increasing problem-solving capability. It is an exponential atop an exponential. More intelligence gives us the tools to solve connectivity and mesh problems and in turn create greater intelligence.

4. Opening the Space Frontier: Finally, it’s important to note that the human race is on the verge of becoming a multiplanetary species. Thousands of years from now, whatever we’ve evolved into, we will look back at these next few decades as the moment in time when the human race moved off Earth irreversibly. Today, billions of dollars are being invested privately into the commercial space industry. Efforts led by SpaceX are targeting humans on Mars, while efforts by Blue Origin are looking at taking humanity back to the moon, and plans by my own company, Planetary Resources, strive to unlock near-infinite resources from the asteroids.

In Conclusion

The rate of human evolution is accelerating as we transition from the slow and random process of “Darwinian natural selection” to a hyper-accelerated and precisely-directed period of “evolution by intelligent direction.” In this post, I chose not to discuss the power being unleashed by such gene-editing techniques as CRISPR-Cas9. Consider this yet another tool able to accelerate evolution by our own hand.

The bottom line is that change is coming, faster than ever considered possible. All of us leaders, entrepreneurs and parents have a huge responsibility to inspire and guide the transformation of humanity on and off the Earth. What we do over the next 30 years—the bridges we build to abundance—will impact the future of the human race for millennia to come. We truly live during the most exciting time ever in human history.


Why Tech is Accelerating – Peter Diamandis

January 23, 2016


No doubt you’ve heard of Moore’s Law.

What you might not realize is that Moore’s Law only refers to the exponential price-performance improvements of integrated circuits (over the last 50 years).

Did you know that exponential growth has been going on for a much longer period? Or that such growth is occurring in other fields outside of computing, such as communication and genomics?

Such exponential growth is actually described by “The Law of Accelerating Returns,” a term coined by my friend and Singularity University Chancellor/Co-founder Ray Kurzweil.

This blog aims to explain the difference between Moore’s Law and the Law of Accelerating Returns – an important distinction to understand for the exponentially minded.

What is Moore’s Law?

In 1965, Gordon Moore (a founder of Intel) published a paper observing that between 1958 and 1965, the number of transistors on an integrated circuit have been doubling roughly every 18 to 24 months. He projected this would continue for some time. This concept has held true for 50 years and is known as “Moore’s Law.”

To get a gut feeling of Moore’s law, let’s look at the physical evolution of the microchip. In 1958, a scientist at Texas Instruments developed the first-ever integrated circuit. It had two transistors (the more, the better) with a “gate process length” (the smaller, the better) of about ½ inch. This scientist would go on to win the Nobel Prize.

The first integrated circuit in 1958

The first integrated circuit in 1958

Now, fast forward 13 years.

The Intel 4004 Integrated Circuit

The Intel 4004 Integrated Circuit

In 1971, Intel came out with its first commercial product, a 4-bit CPU called the Intel 4004 integrated circuit. The 4004 had 2,300 transistors with a gate length of 10,000 nanometers, and computer power of about 740 KHz.

By this time, each transistor cost about $1, on average.

Now fast forward another 40 years…

2012 GPU from Nvidia

2012 GPU from Nvidia

In 2012, Nvidia released a new graphical processor unit (GPU) with 7.1 billion transistors, a gate length of 28 nanometers, and processing power of 7GHz.

The cost of a transistor: ~ $0.0000001

In just 40 years, the technology experienced a 100 billion-fold improvement, right on schedule for Moore’s Law.

The Law of Accelerating Returns

But Moore’s Law only describes the latest period (the 5th paradigm) of computational exponential growth.

As Ray Kurzweil described in his most excellent book, The Singularity Is Near, exponential growth in computation has existed for over a century, and has gone through five different paradigms of exponential growth:

  • 1st Paradigm: Electromechanical computers
  • 2nd Paradigm: Relay-based computers
  • 3rd Paradigm: Vacuum-tube based computers
  • 4th Paradigm: Transistor-based computers
  • 5th Paradigm: Integrated circuits (Moore’s Law)

Moore’s Law (the 5th paradigm of computation) is therefore a subset of a much broader exponential principle described by Kurzweil’s Law of Accelerating Returns.

Graphic from Singularity is Near, demonstrating

Graphic from Singularity is Near, demonstrating “Law of Accelerating Returns” in the field of computation

It’s important to note that Ray recently mentioned to me that the sixth paradigm – three-dimensional computing – is already underway.

Why is Technology Accelerating?

It is important to understand the underlying drivers for the Law of Accelerating Returns. Why is technology accelerating? As Ray references, “We won’t experience 100 years of progress in the 21st century — it will be more like 20,000 years of progress (at today’s rate)”.

Here’s the basic reasoning:

  • Evolution (biological or technological) results in a better next-generation product. That product is thereby a more effective and capable method, and is used in developing the next stage of evolutionary progress. It’s a positive feedback loop.
  • Put differently, we are using faster tools to design and build faster tools.
  • In biological evolution, the more advanced life form (think cellular) is able to gather energy and reproduce more effectively, and therefore outperforms and out-evolves other life forms.
  • As a result, the rate of progress of an evolutionary process increases exponentially over time, and the “returns” such as speed, cost-effectiveness, or overall “power” also increase exponentially over time.
  • As a particular evolutionary process (e.g., computation) becomes more effective (e.g., cost effective), greater resources are then deployed toward furthering the progress of that process. This results in a second level of exponential growth (i.e., the rate of exponential growth itself grows exponentially).

Is Biology & Life Advancing Exponentially?

To paraphrase Kurzweil… The Law of Accelerating Returns also explains exponential advancement of life (biology) on this planet. Looking at biological evolution on Earth, the first step was the emergence of DNA, which provided a digital method to record the results of evolutionary experiments. Then, the evolution of cells, tissues, organs and a multitude of species that ultimately combined rational thought with an opposable appendage (i.e., the thumb) caused a fundamental paradigm shift from biology to technology. The first technological steps – sharp edges, fire, the wheel – took tens of thousands of years. For people living in this era, there was little noticeable technological change in even a thousand years. By 1000 A.D., progress was much faster and a paradigm shift required only a century or two. In the 19th century, we saw more technological change than in the nine centuries preceding it. Then in the first 20 years of the 20th century, we saw more advancement than in all of the 19th century. Now, paradigm shifts occur in only a few years’ time. The World Wide Web did not exist in anything like its present form just a decade ago, and didn’t exist at all two decades before that. As these exponential developments continue, we will begin to unlock unfathomably productive capabilities and begin to understand how to solve the world’s most challenging problems. There has never been a more exciting time to be alive.


These Technologies Will Shift the Global Balance of Power in the Next 20 Years

December 06, 2012

Technology in the hands of businessmen

Governments, businesses, and economists have all been caught off guard by the geopolitical shifts that happened with the crash of oil prices and the slowdown of China’s economy. Most believe that the price of oil will recover and that China will continue its rise. They are mistaken. Instead of worrying about the rise of China, we need to fear its fall; and while oil prices may oscillate over the next four or five years, the fossil-fuel industry is headed the way of the dinosaur. The global balance of power will shift as a result.

LED light bulbs, improved heating and cooling systems, and software systems in automobiles have gradually been increasing fuel efficiency over the past decades. But the big shock to the energy industry came with fracking, a new set of techniques and technologies for extracting more hydrocarbons from the ground. Though there are concerns about environmental damage, these increased the outputs of oil and gas, caused the usurpation of old-line coal-fired power plants, and dramatically reduced America’s dependence on foreign oil.

The next shock will come from clean energy. Solar and wind are now advancing on exponential curves. Every two years, for example, solar installation rates are doubling, and photovoltaic-module costs are falling by about 20 percent. Even without the subsidies that governments are phasing out, present costs of solar installations will, by 2022, halve, reducing returns on investments in homes, nationwide, to less than four years. By 2030, solar power will be able to provide 100 percent of today’s energy needs; by 2035, it will seem almost free — just as cell-phone calls are today.

This seems hard to believe, given that solar production provides less than one percent of the Earth’s energy needs today. But this is how exponential technologies advance. They double in performance every year or two and their prices fall. Given that California already generates more than 5 percent of its electricity from utility-scale solar, it is not hard to fathom what the impact of another few doublings would be: the imminent extinction of the fossil-fuel industry. Exponential technologies are deceptive because they move very slowly at first, but one percent becomes two percent, which becomes four, eight, and sixteen; you get the idea. As futurist Ray Kurzweil says, when an exponential technology is at one percent, you are halfway to 100 percent, and that is where solar and wind energies are now.

Anyone tracking the exponential growth of fracking and the gradual advances that were being made in conservation and fuel efficiency should have been able to predict, years ago, that by 2015, the price of oil would drop dramatically. It wasn’t surprising that relatively small changes in supply and demand caused massive disruptions to global oil prices; that is how markets work. They cause commodities futures and stock prices to fall dramatically when slowdowns occur. This is what is happening to China’s markets also. The growth of China’s largest industry, manufacturing, has stalled, causing ripple effects throughout China’s economy.

For decades, manufacturing was flooding into China from the U.S. and Europe and fueling its growth. And then a combination of rising labor and shipping costs and automation began to change the economics of China manufacturing. Now, robots are about to tip the balance further.

Foxconn had announced in August 2011 that it would replace one million workers with robots. This didn’t occur, because the robots then couldn’t work alongside human workers to do sophisticated circuit board assembly. But a newer generation of robots such as ABB’s Yumi and Rethink Robotics’ Sawyer can do that. They are dextrous enough to thread a needle and cost as much as a car does.

China is aware of the advances in robotics and plans to take the lead in replacing humans with robots. Guangdong province is constructing the world’s first “zero-labor factor,” with 1,000 robots which do the jobs of 2,000 humans. It sees this as a solution to increasing labor costs.

The problem for China is that its robots are no more productive than their counterparts in the West are. They all work 24×7 without complaining or joining labor unions. They cost the same and consume the same amount of energy. Given the long shipping times and high transportation costs it no longer makes sense to send raw materials across the oceans to China to have them assembled into finished goods and shipped to the West. Manufacturing can once again become a local industry.

It will take many years for Western companies to learn the intricacies of robotic manufacturing, build automated factories, train workers, and deal with the logistical challenges of supply chains being in China. But these are surmountable problems. What is now a trickle of manufacturing returning to the West will, within five to seven years, become a flood.

After this, another technology revolution will begin: digital manufacturing.

In conventional manufacturing, parts are produced by humans using power-driven machine tools, such as saws, lathes, milling machines, and drill presses, to physically remove material to obtain the shape desired. In digital manufacturing, parts are produced by melting successive layers of materials based on 3D models — adding materials rather than subtracting them. The “3D printers” that produce these use powered metal, droplets of plastic, and other materials — much like the toner cartridges that go into laser printers. 3D printers can already create physical mechanical devices, medical implants, jewelry, and even clothing. But these are slow, messy, and cumbersome — much like the first generations of inkjet printers were. This will change.

In the early 2020s we will have elegant low-priced printers for our homes that can print toys and household goods. Businesses will use 3D printers to do small-scale production of previously labor-intensive crafts and goods. Late in the next decade, we will be 3D-printing buildings and electronics. These will eventually be as fast as today’s laser printers are. And don’t be surprised if by 2030, the industrial robots go on strike, waving placards saying “stop the 3D printers: they are taking our jobs away.”

The geopolitical implications of these changes are exciting and worrisome. America will reinvent itself just as does every 30-40 years; it is, after all, leading the technology boom. And as we are already witnessing, Russia and China will stir up regional unrest to distract their restive populations; oil producers such as Venezuela will go bankrupt; the Middle East will become a cauldron of instability. Countries that have invested in educating their populations, built strong consumer economies, and have democratic institutions that can deal with social change will benefit — because their people will have had their basic needs met and can figure out how to take advantage of the advances in technology.