10 Tech Trends That Made the World Better in 2016

March 30, 2017

2016 was an incredible year for technology, and for humanity.

Despite all the negative political-related news, there were 10 tech trends this year that positively transformed humanity.

For this “2017 Kick-Off” post, I reviewed 52 weeks of science and technology breakthroughs, and categorized them into the top 10 tech trends changing our world.

I’m blown away by how palpable the feeling of exponential change has become.

I’m also certain that 99.99% of humanity doesn’t understand or appreciate the ramifications of what is coming.

In this post, enjoy the top 10 tech trends of the past 12 months and why they are important to you.

Let’s dive in…

1. We Are Hyper-Connecting the World

In 2010, 1.8 billion people were connected. Today, that number is about 3 billion, and by 2022 – 2025, that number will expand to include every human on the planet, approaching 8 billion humans.

Unlike when I was connected 20 years ago at 9,600 baud via AOL, the world today is coming online at one megabit per second or greater, with access to the world’s information on Google, access to the world’s products on Amazon, access to massive computing power on AWS and artificial intelligence with Watson… not to mention crowdfunding for capital and crowdsourcing for expertise.

Looking back at 2016, you can feel the acceleration. Here are seven stories that highlight the major advances in our race for global connectivity:

a) Google’s 5G Solar Drones Internet Service: Project Skybender is Google’s secretive 5G Internet drone initiative. News broke this year that they have been testing these solar-powered drones at Spaceport America in New Mexico to explore ways to deliver high-speed Internet from the air. Their purported millimeter wave technology could deliver data from drones up to 40 times faster than 4G.

b) Facebook’s Solar Drone Internet Service: Even before Google, Facebook has been experimenting with a solar-powered drone, also for the express purpose of providing Internet to billions. The drone has the wingspan of an airliner and flies with roughly the power of three blowdryers.

c) ViaSat Plans 1 Terabit Internet Service: ViaSat, a U.S.-based satellite company, has teamed up with Boeing to launch three satellites to provide 1 terabit-per-second Internet connections to remote areas, aircraft and maritime vehicles. ViaSat is scheduled to launch its satellite ViaSat2 in early 2017.

d) OneWeb Raises $1.2B for 900 Satellite Constellation: An ambitious low-Earth orbit satellite system proposed by my friends Greg Wyler, Paul Jacobs and Richard Branson just closed $1.2 billion in financing. This 900-satellite system will offer global internet services as soon as 2019.

e) Musk Announces 4,425 Internet Satellite System: Perhaps the most ambitious plan for global internet domination was proposed this year by SpaceX founder Elon Musk, with plans for SpaceX to deploy a 4,425 low-Earth orbit satellite system to blanket the entire planet in broadband.

2. Solar/Renewables Cheaper Than Coal

We’ve just exceeded a historic inflection point. 2016 was the year solar and renewable energy became cheaper than coal.

In December, the World Economic Forum reported that solar and wind energy is now the same price or cheaper than new fossil fuel capacity in more than 30 countries.

“As prices for solar and wind power continue their precipitous fall, two-thirds of all nations will reach the point known as ‘grid parity’ within a few years, even without subsidies,” they added.

This is one of the most important developments in the history of humanity, and this year marked a number of major milestones for renewable energy.

Here’s 10 data points (stories) I’ve hand-picked to hammer home the historic nature of this 2016 achievement.

a) 25 percent of the World’s Power Comes From Renewables: REN21, a global renewable energy policy network, published a report showing that a quarter of the world’s power now comes from renewable energy. International investment in renewable energy reached $286 billion last year (with solar accounting for over $160b of this), and it’s accelerating.

b) In India, Solar Is Now Cheaper Than Coal: An amazing milestone indeed, and India is now on track to deploy >100 gigawatts of solar power by 2022.

c) The UK Is Generating More Energy From Solar Than Coal: For the first time in history, this year the U.K. has produced an estimated 6,964 GWh of electricity from solar cells, 10% higher than the 6,342 GWh generated by coal.

d) Coal Plants Being Replaced by Solar Farms: The Nanticoke Generating Station in Ontario, once North America’s largest coal plant, will be turned into a solar farm.

e) Coal Will Never Recover: The coal industry, once the backbone of U.S. energy, is fading fast on account of renewables like solar and wind. Official and expert reports now state that it will never recover (e.g., coal power generation in Texas is down from 39% in early 2015 to 24.8% in May 2016).

f) Scotland Generated 106% Energy From Wind: This year, high winds boosted renewable energy output to provide 106% of Scotland’s electricity needs for a day.

g) Costa Rica Ran on Renewables for 2+ Months: The country ran on 100% renewable energy for 76 days.

h) Google to Run 100% on Renewable Energy: Google has announced its entire global business will be powered by renewable energy in 2017.

i) Las Vegas’ City Government Meets Goal of 100% Power by Renewables: Las Vegas is now the largest city government in the country to run entirely on renewable energy.

j) Tesla’s Gigafactory: Tesla’s $5 billion structure in Nevada will produce 500,000 lithium ion batteries annually and Tesla’s Model III vehicle. It is now over 30 percent complete… the 10 million square foot structure is set to be done by 2020. Musk projected that a total of 100 Gigafactories could provide enough storage capacity to run the entire planet on renewables.

3. Glimpsing the End of Cancer and Disease

Though it may seem hard to believe, the end of cancer and disease is near.

Scientists and researchers have been working diligently to find novel approaches to combating these diseases, and 2016 saw some extraordinary progress in this regard.

Here’re my top 10 picks that give me great faith about our abilities to cure cancer and most diseases:

a) Cancer Immunotherapy Makes Strides (Extraordinary Results): Immunotherapy involves using a patient’s own immune system (in this case, T cells) to fight cancer. Doctors remove immune cells from patients, tag them with “receptor” molecules that target the specific cancer, and then infuse the cells back in the body. During the study, 94% of patients with acute lymphoblastic leukemia (ALL) saw symptoms vanish completely. Patients with other blood cancers had response rates greater than 80%, and more than half experienced complete remission.

b) In China, CRISPR/Cas9 used in First Human Trial: A team of scientists in China (Sichuan University) became the first to treat a human patient with an aggressive form of lung cancer with the groundbreaking CRISPR-Cas9 gene-editing technique.

c) NIH Approves Human Trials Using CRISPR: A team of physicians at the University of Pennsylvania’s School of Medicine had their project of modifying the immune cells of 18 different cancer patients with the CRISPR-Cas9 system approved by the National Institute of Health. Results are TBD.

d) Giant Leap in Treatment of Diabetes from Harvard: For the first time, Harvard stem cell researchers created “insulin producing” islet cells to cure diabetes in mice. This offers a promising cure in humans as well.

e) HIV Genes Cut Out of Live Animals Using CRISPR: Scientists at the Comprehensive NeuroAIDS Center at Temple University were able to successfully cut out the HIV genes from live animals, and they had over a 50% success rate.

f) New Treatment Causes HIV Infected Cells to Vanish: A team of scientists in the U.K. discovered a new treatment for HIV. The patient was treated with vaccines that helped the body recognize the HIV-infected cells. Then, the drug Vorinostat was administered to activate the dormant cells so they could be spotted by the immune system.

g) CRISPR Cures Mice of Sickle Cell Disease: CRISPR was used to completely cure sickle cell by editing the errant DNA sequence in mice. The treatment may soon be used to cure this disease, which affects about 100,000 Americans.

h) Eradicating Measles (in the U.S.): The World Health Organization (WHO) announced that after 50 years, they have successfully eradicated measles in the U.S. This is one of the most contagious diseases around the world.

i) New Ebola Vaccine Proved to be 100% Effective: None of the nearly 6,000 individuals vaccinated with rVSV-ZEBOV in Guinea, a country with more than 3,000 confirmed cases of Ebola, showed any signs of contracting the disease.

j) Eradicating Polio: The World Health Organization has announced that it expects to fully eradicate polio worldwide by Early 2017.

4. Progress on Extending Human Life

I am personally convinced that we are on the verge of significantly impacting human longevity. At a minimum, making “100 years old the new 60,” as we say at Human Longevity Inc.

This year, hundreds of millions of dollars were poured into research initiatives and companies focused on extending life.

Here are five of the top stories from 2016 in longevity research:

a) 500-Year-Old Shark Discovered: A Greenland shark that could have been over 500 years old was discovered this year, making the species the longest-lived vertebrate in the world.

b) Genetically Reversing Aging: With an experiment that replicated stem cell-like conditions, Salk Institute researchers made human skin cells in a dish look and behave young again, and mice with premature aging disease were rejuvenated with a 30% increase in lifespan. The Salk Institute expects to see this work in human trials in less than 10 years.

c) 25% Life Extension Based on Removal of Senescent Cells: Published in the medical journal Nature, cell biologists Darren Baker and Jan van Deursen have found that systematically removing a category of living, stagnant cells can extend the life of mice by 25 percent.

d) Funding for Anti-Aging Startups: Jeff Bezos and the Mayo Clinic-backed Anti-Aging Startup Unity Biotechnology with $116 million. The company will focus on medicines to slow the effects of age-related diseases by removing senescent cells (as mentioned in the article above).

e) Young Blood Experiments Show Promising Results for Longevity: Sakura Minami and her colleagues at Alkahest, a company specializing in blood-derived therapies for neurodegenerative diseases, have found that simply injecting older mice with the plasma of young humans twice a week improved the mice’s cognitive functions as well as their physical performance. This practice has seen a 30% increase in lifespan, and increase in muscle tissue and cognitive function.

More at: https://singularityhub.com/2017/01/05/10-tech-trends-that-made-the-world-better-in-2016/

In CRISPR advance, scientists successfully edit human T cells

July 29, 2015

crispr

In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9. Because these immune-system cells play important roles in a wide range of diseases, from diabetes to AIDS to cancer, the achievement provides a versatile new tool for research on T cell function, as well as a path toward CRISPR/Cas9-based therapies for many serious health problems.

Using their novel approach, the scientists were able to disable a protein on the T-cell surface called CXCR4, which can be exploited by HIV when the virus infects T cells and causes AIDS. The group also successfully shut down PD-1, a protein that has attracted intense interest in the burgeoning field of cancer immunotherapy, as scientists have shown that using drugs to block PD-1 coaxes T cells to attack tumors.

The CRISPR/Cas9 system has captured the imagination of both scientists and the general public, because it makes it possible to easily and inexpensively edit genetic information in virtually any organism. T cells, which circulate in the blood, are an obvious candidate for medical applications of the technology, as these cells not only stand at the center of many disease processes, but could be easily gathered from patients, edited with CRISPR/Cas9, then returned to the body to exert therapeutic effects.

But in practice, editing T cell genomes with CRISPR/Cas9 has proved surprisingly difficult, said Alexander Marson, PhD, a UCSF Sandler Fellow, and senior and co-corresponding author of the new study. “Genome editing in human T cells has been a notable challenge for the field,” Marson said. “So we spent the past year and a half trying to optimize editing in functional T cells. There are a lot of potential therapeutic applications, and we want to make sure we’re driving this as hard as we can.”

The new work was done under the auspices of the Innovative Genomics Initiative (IGI), a joint UC Berkeley-UCSF program co-directed by Berkeley’s Jennifer Doudna, PhD, and Jonathan Weissman, PhD, professor of cellular and molecular pharmacology at UCSF and a Howard Hughes Medical Institute (HHMI) investigator. Marson is an affiliate member of the IGI.

Doudna, professor of chemistry and of cell and molecular biology at Berkeley, and an HHMI investigator, said that the research is a significant step forward in bringing the power of CRISPR/Cas9 editing to human biology and medicine. “It’s been great to be part of this exciting collaboration, and I look forward to seeing the insights from this work used to help patients in the future,” said Doudna, co-corresponding author of the new paper.

Cas9, an enzyme in the CRISPR system that makes cuts in DNA and allows new genetic sequences to be inserted, has generally been introduced into cells using viruses or circular bits of DNA called plasmids. Then, in a separate step, a genetic construct known as single-guide RNA, which steers Cas9 to the specific spots in DNA where cuts are desired, is also placed into the cells.

Until recently, however, editing human T cells with CRISPR/Cas9 has been inefficient, with only a relatively small percentage of cells being successfully modified. And while scientists have had some success in switching off genes by inserting or deleting random sequences, they have not yet been able to use CRISPR/Cas9 to paste in (or “knock in”) specific new sequences to correct mutations in T cells.

As will be reported online in Proceedings of the National Academy of Sciences during the week of July 27, 2015, a team led by first authors Kathrin Schumann, PhD, a postdoctoral fellow in Marson’s laboratory, and Steven Lin, PhD, a postdoctoral fellow in the Doudna lab, cracked these problems by streamlining the delivery of Cas9 and single-guide RNA to cells.

In lab dishes, the group assembled Cas9 ribonucleoproteins, or RNPs, which combine the Cas9 protein with single-guide RNA. They then used a method known as electroporation, in which cells are briefly exposed to an electrical field that makes their membranes more permeable, to quickly deliver these RNPs to the interior of the cells.

With these innovations, the researchers successfully edited CXCR4 and PD-1, even knocking in new sequences to replace specific genetic “letters” in these proteins. The group was then able to sort the cells using markers expressed on the cell surface, to help pull out successfully edited cells for research, and eventually for therapeutic use.

“We tried for a long time to introduce Cas9 with plasmids or lentiviruses, and then to express separately the single-guide RNA in the cell,” Schumann said. “Using RNPs made outside the cell, so that the cell is responsible for as little of the process as possible, has made a big difference.”

Marson stressed that, while recent reports of CRISPR/Cas9 editing of human embryos have stirred up controversy, T cells are created anew in each individual, so modifications would not be passed on to future generations. He hopes that Cas9-based therapies for T cell-related disorders, which include autoimmune diseases as well as immunodeficiencies such as “bubble boy disease,” will enter the clinic in the future.

“There’s actually well-trodden ground putting modified T cells into patients. There are companies out there already doing it and figuring out the safety profile, so there’s increasing clinical infrastructure that we could potentially piggyback on as we work out more details of genome editing,” Marson said. “I think CRISPR-edited T cells will eventually go into patients, and it would be wrong not to think about the steps we need to take to get there safely and effectively.”


Story Source:

The above post is reprinted from materials provided by University of California – San Francisco. Note: Materials may be edited for content and length.

http://www.sciencedaily.com/releases/2015/07/150727153727.htm

World’s first genetic modification of human embryos reported: Experts consider ethics

April 27, 2015

Chinese scientists say they’ve genetically modified human embryos for the very first time. The team attempted to modify the gene responsible for β-thalassaemia, a potentially fatal blood disorder, using a gene-editing technique known as CRISPR/Cas9. Gene editing is a recently developed type of genetic engineering in which DNA is inserted, replaced, or removed.

The team injected 86 embryos and 71 survived, of which 54 were genetically tested. This revealed that just 28 were successfully spliced, and that only a fraction of those contained the replacement genetic material. Analysis also revealed a number of ‘off-target’ mutations assumed to be caused by the technique acting in other areas of the genome. The results reveal serious obstacles to using the method in medical applications.

The scientists have tried to head off ethical concerns by using ‘non-viable’ embryos, which cannot result in a live birth, that were obtained from local fertility clinics. However, the work is very controversial, with some warning it could be the start of a slippery slope towards designer babies.

Below, some experts weigh-in with ethical questions and considerations.

Prof Robin Lovell Badge, Crick Institute, on the science: “The experiments reported by Junjiu Huang and colleagues (Liang et al) in the journal Protein Cell on gene editing in abnormally fertilised human embryos are, I expect, the first of several that we will see this year. There has been much excitement among scientists about the power of these new gene editing methods, and particularly about the CRISPR/Cas9 system, which is relatively simple to use and generally very efficient. The possibility of using such methods to genetically modify human embryos, and therefore humans, has been on the cards since these methods were first described, and recently these prospects have been brought to the attention of the public through several commentaries made by senior scientists and commentators, some of whom have called for a moratorium to halt any attempts.”

Dr Yalda Jamshidi, Senior Lecturer in Human Genetics, St George’s University Hospital Foundation Trust, said: “Inherited genetic conditions often result because the function of a gene is disrupted. In theory replacing the defective gene with a healthy one would be the ideal solution. This type of treatment is what we call gene therapy and researchers have been working on developing techniques to accomplish this for many years.

“Techniques to correct defective genes in ‘non-reproductive’ cells are already at various stages of clinical development and promise to be a powerful approach for many human diseases which don’t yet have an effective treatment. However, altering genes in human embryos can have unpredictable effects on future generations. Furthermore the study by Huang et al showed that the although the CRISPR/Cas9 technique they used can work in the embryo, it can miss the target in the gene and is too inefficient.

“Future research on the technique may improve the accuracy and efficiency, however scientists still don’t fully understand the role of the DNA, and all of its genes. Therefore it is impossible to assess the risks from mis-targeted changes in the DNA sequence, which would affect both the treated embryo and any future generations.”

Prof Shirley Hodgson, Professor of Cancer Genetics, St George’s University of London, said: “I think that this is a significant departure from currently accepted research practice. This is because any manipulation of the germline of human embryos is potentially heritable. Can we be certain that the embryos that the researchers were working on were indeed non-viable? In the past all the gene therapy research that has been approved by regulatory bodies has been somatic, not germline, because of the potentially unpredictable and heritable effects of germline research. The fact that these researchers found that there were a number of “off target” mutations resulting from the technique they used is clearly a worry in this context. Any proposal to do germline genetic manipulation should be very carefully considered by international regulatory bodies before it should be considered as a serious research prospect. This is because of the obvious concerns about the heritability of the genetic alterations induced, and the way in which such research could spread from work on “non-viable” embryos, to work on viable ones once this type of research had been accepted in principle by international regulatory bodies.”

Prof Darren Griffin, Professor of Genetics, University of Kent, said: “Given the widespread use of the CRISPR/Cas9 system, such announcement was inevitable, sooner rather than later. We clearly have a lot of thinking to do. Germline manipulation is currently illegal in the UK but the question is bound to be asked whether this should change, especially if the safety concerns are allayed.”

Associate Professor Peter Illingworth is Medical Director at IVFAustralia: “This is a fascinating piece of experimental science. Using abnormally-fertilised human embryos (I.e. With three sets of DNA instead of two), they have studied whether the a human gene can be modified. They have demonstrated that, in some embryos, but not all, they can change the abnormal human gene. They also find that other genes are affected which may be a serious concern. What they have shown is that it is technically possible, not that it is practically feasible or safe.”

Further information:

http://www.sciencemediacentre.org/expert-reaction-to-the-application-of-genome-editing-techniques-to-human-embryos/

http://www.smc.org.au/expert-reaction-worlds-first-genetic-modification-of-human-embryos-reported-protein-cell/


Story Source:

The above story is based on materials provided by ResearchSEA. Note: Materials may be edited for content and length.

Journal Reference:

  1. Puping Liang, Yanwen Xu, Xiya Zhang, Chenhui Ding, Rui Huang, Zhen Zhang, Jie Lv, Xiaowei Xie, Yuxi Chen, Yujing Li, Ying Sun, Yaofu Bai, Zhou Songyang, Wenbin Ma, Canquan Zhou, Junjiu Huang.CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell, 2015; DOI: 10.1007/s13238-015-0153-5