Here’s Everything You Need to Know about Elon Musk’s Human/AI Brain Merge

January 05, 2018

Neuralink Has Arrived

After weeks of anticipation, details on Elon Musk’s brain-computer interface company Neuralink have finally been revealed. In a detailed report on the website Wait But Why, Tim Urban recounts insights gleaned from his weeks meeting with Musk and his Neuralink team at their San Francisco headquarters. He offers an incredibly detailed and informative overview of both Musk’s latest venture and its place in humanity’s evolution, but for those of you interested in just the big picture, here’s what you really need to know about Neuralink.

Your Brain Will Get Another “Layer”

Right now, you have two primary “layers” to your brain: the limbic system, which controls things like your emotions, long-term memory, and behavior; and the cortex, which handles your complex thoughts, reasoning, and long-term planning. Musk wants his brain interface to be a third layer that will complement the other two. The weirdest thing about that goal may be that he thinks we actually already have this third layer — we just don’t have the best interface for it:

We already have a digital tertiary layer in a sense, in that you have your computer or your phone or your applications…The thing that people, I think, don’t appreciate right now is that they are already a cyborg…If you leave your phone behind, it’s like missing limb syndrome. I think people—they’re already kind of merged with their phone and their laptop and their applications and everything.

The goal of Neuralink, then, is eliminating the middleman and putting that power we currently have at our fingertips directly into our brains. Instead of one person using their phone to transmit a thought to another person (“Dinner at 8?”), the thought would just go from one brain to the other directly.

Thankfully, we’ll be able to control this completely, Musk tells Urban: “People won’t be able to read your thoughts — you would have to will it. If you don’t will it, it doesn’t happen. Just like if you don’t will your mouth to talk, it doesn’t talk.”

Musk Is Working with Some Very Smart People

Musk met with more than 1,000 people before deciding on the eight who would help him shape the future of humanity at Neuralink. He claims assembling the right team was a challenge in and of itself, as he needed to find people capable of working in a cross-disciplinary field that includes everything from brain surgery to microscopic electronics.

The crew he landed is a veritable supergroup of smarties. They have backgrounds from MIT, Duke, and IBM, and their bios include phrases like “neural dust,” “cortical physiology,” and “human psychophysics.” They’re engineers, neurosurgeons, and chip designers, and if anyone can bring Elon Musk’s vision to life, it’s them.

The Timeline For Adoption Is Hazy…

Neuralink won’t come out the gate with a BMI that transforms you into a walking computer. The first product the company will focus on releasing will be much more targeted. “We are aiming to bring something to market that helps with certain severe brain injuries (stroke, cancer lesion, congenital) in about four years,” said Musk.

I think we are about 8 to 10 years away from this being usable by people with no disability.” – Musk

The same way SpaceX was able to fund its research on reusable rockets by making deliveries to the ISS or Tesla was able to use profits from its early car sales to fund battery research, these earliest BMIs to treat diseases or the disabled will keep Neuralink afloat as it works on its truly mind-bending technologies.

As for when those technologies, the ones that allow healthy people to channel their inner telepaths, will arrive, Musk’s fairly optimistic timeline comes with several contingencies: “I think we are about 8 to 10 years away from this being usable by people with no disability…It is important to note that this depends heavily on regulatory approval timing and how well our devices work on people with disabilities.”

…Because The Hurdles are Many

Those are just two of the hurdles Neuralink faces. Elon Musk might make innovation look easy, but even going to Mars seems relatively straightforward in comparison to his plans for his latest company.

First, there are the engineering hurdles to overcome. The company has to deal with the problems of biocompatibility, wirelessness, power, and — the big one — bandwidth. To date, we’ve never put more than roughly 200 electrodes in a person’s brain at one time. When talking about a world-changing interface, the Neuralink team told Urban they were thinking something like “one million simultaneously recorded neurons.” Not only would they need to find a way to ensure that the brain could effectively communicate with that many electrodes, they also need to overcome the very practical problem of where to physically put them.

The engineering is only half the battle, though. Like Musk mentioned, regulatory approval will be a big factor in the development and adoption of Neuralink’s tech. The company also faces potential skepticism and even fear from a public that doesn’t want anyone cutting into their brains to install some high-tech machinery — according to a recent Pew survey, the public is even more worried about brain computer interfaces than gene editing. There’s also the not-entirely-unfounded fear that these computers could be hacked.

Add to all that our still very, very incomplete understanding of how the brain ticks exactly, and you can see that the Neuralink team has its work cut out for them.

Neuralink Won’t Exist in a Vacuum

Thankfully, they won’t be working to remake our minds alone — many other universities and research institutes are pushing brain interface technology forward. Facebook’s Building 8 is working on its own BCI, MIT is creating super-thin wires for use in brain implants, and other cyborg devices are already in the works to help the paralyzed walk again and the blind regain their sight. Each new development will push the field forward, and the team at Neuralink will be able to learn from the mistakes and successes of others in the field.

Just like other electric cars were on the road before Tesla came along, brain computer interfaces are not new — the tech might just need a visionary like Musk to elevate it (and us) to the next level.

This article was originally published by:


Direct brain interface between humans

November 8, 2014

Sometimes, words just complicate things. What if our brains could communicate directly with each other, bypassing the need for language?

University of Washington researchers have successfully replicated a direct brain-to-brain connection between pairs of people as part of a scientific study following the team’s initial demonstration a year ago. In the newly published study, which involved six people, researchers were able to transmit the signals from one person’s brain over the Internet and use these signals to control the hand motions of another person within a split second of sending that signal.

At the time of the first experiment in August 2013, the UW team was the first to demonstrate two human brains communicating in this way. The researchers then tested their brain-to-brain interface in a more comprehensive study, published Nov. 5 in the journal PLOS ONE.

“The new study brings our brain-to-brain interfacing paradigm from an initial demonstration to something that is closer to a deliverable technology,” said co-author Andrea Stocco, a research assistant professor of psychology and a researcher at UW’s Institute for Learning & Brain Sciences. “Now we have replicated our methods and know that they can work reliably with walk-in participants.”

Collaborator Rajesh Rao, a UW associate professor of computer science and engineering, is the lead author on this work.

The research team combined two kinds of noninvasive instruments and fine-tuned software to connect two human brains in real time. The process is fairly straightforward. One participant is hooked to an electroencephalography machine that reads brain activity and sends electrical pulses via the Web to the second participant, who is wearing a swim cap with a transcranial magnetic stimulation coil placed near the part of the brain that controls hand movements.

Using this setup, one person can send a command to move the hand of the other by simply thinking about that hand movement.

The UW study involved three pairs of participants. Each pair included a sender and a receiver with different roles and constraints. They sat in separate buildings on campus about a half mile apart and were unable to interact with each other in any way — except for the link between their brains.

Each sender was in front of a computer game in which he or she had to defend a city by firing a cannon and intercepting rockets launched by a pirate ship. But because the senders could not physically interact with the game, the only way they could defend the city was by thinking about moving their hand to fire the cannon.

Across campus, each receiver sat wearing headphones in a dark room — with no ability to see the computer game — with the right hand positioned over the only touchpad that could actually fire the cannon. If the brain-to-brain interface was successful, the receiver’s hand would twitch, pressing the touchpad and firing the cannon that was displayed on the sender’s computer screen across campus.

Researchers found that accuracy varied among the pairs, ranging from 25 to 83 percent. Misses mostly were due to a sender failing to accurately execute the thought to send the “fire” command. The researchers also were able to quantify the exact amount of information that was transferred between the two brains.

Another research team from the company Starlab in Barcelona, Spain, recently published results in the same journal showing direct communication between two human brains, but that study only tested one sender brain instead of different pairs of study participants and was conducted offline instead of in real time over the Web.

Now, with a new $1 million grant from the W.M. Keck Foundation, the UW research team is taking the work a step further in an attempt to decode and transmit more complex brain processes.

With the new funding, the research team will expand the types of information that can be transferred from brain to brain, including more complex visual and psychological phenomena such as concepts, thoughts and rules.

They’re also exploring how to influence brain waves that correspond with alertness or sleepiness. Eventually, for example, the brain of a sleepy airplane pilot dozing off at the controls could stimulate the copilot’s brain to become more alert.

The project could also eventually lead to “brain tutoring,” in which knowledge is transferred directly from the brain of a teacher to a student.

“Imagine someone who’s a brilliant scientist but not a brilliant teacher. Complex knowledge is hard to explain — we’re limited by language,” said co-author Chantel Prat, a faculty member at the Institute for Learning & Brain Sciences and a UW assistant professor of psychology.

Other UW co-authors are Joseph Wu of computer science and engineering; Devapratim Sarma and Tiffany Youngquist of bioengineering; and Matthew Bryan, formerly of the UW.

The research published in PLOS ONE was initially funded by the U.S. Army Research Office and the UW, with additional support from the Keck Foundation.

Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Michelle Ma. Note: Materials may be edited for content and length.

Journal Reference:

  1. Rajesh P. N. Rao, Andrea Stocco, Matthew Bryan, Devapratim Sarma, Tiffany M. Youngquist, Joseph Wu, Chantel S. Prat. A Direct Brain-to-Brain Interface in Humans. PLoS ONE, 2014; 9 (11): e111332 DOI: 10.1371/journal.pone.0111332