These 7 Disruptive Technologies Could Be Worth Trillions of Dollars

June 29, 2017

Scientists, technologists, engineers, and visionaries are building the future. Amazing things are in the pipeline. It’s a big deal. But you already knew all that. Such speculation is common. What’s less common? Scale.

How big is big?

“Silicon Valley, Silicon Alley, Silicon Dock, all of the Silicons around the world, they are dreaming the dream. They are innovating,” Catherine Wood said at Singularity University’s Exponential Finance in New York. “We are sizing the opportunity. That’s what we do.”

Catherine Wood at Exponential Finance.

Wood is founder and CEO of ARK Investment Management, a research and investment company focused on the growth potential of today’s disruptive technologies. Prior to ARK, she served as CIO of Global Thematic Strategies at AllianceBernstein for 12 years.

“We believe innovation is key to growth,” Wood said. “We are not focused on the past. We are focused on the future. We think there are tremendous opportunities in the public marketplace because this shift towards passive [investing] has created a lot of risk aversion and tremendous inefficiencies.”

In a new research report, released this week, ARK took a look at seven disruptive technologies, and put a number on just how tremendous they are. Here’s what they found.

(Check out ARK’s website and free report, “Big Ideas of 2017,” for more numbers, charts, and detail.)

1. Deep Learning Could Be Worth 35 Amazons

Deep learning is a subcategory of machine learning which is itself a subcategory of artificial intelligence. Deep learning is the source of much of the hype surrounding AI today. (You know you may be in a hype bubble when ads tout AI on Sunday golf commercial breaks.)

Behind the hype, however, big tech companies are pursuing deep learning to do very practical things. And whereas the internet, which unleashed trillions in market value, transformed several industries—news, entertainment, advertising, etc.—deep learning will work its way into even more, Wood said.

As deep learning advances, it should automate and improve technology, transportation, manufacturing, healthcare, finance, and more. And as is often the case with emerging technologies, it may form entirely new businesses we have yet to imagine.

“Bill Gates has said a breakthrough in machine learning would be worth 10 Microsofts. Microsoft is $550 to $600 billion,” Wood said. “We think deep learning is going to be twice that. We think [it] could approach $17 trillion in market cap—which would be 35 Amazons.”

2. Fleets of Autonomous Taxis to Overtake Automakers

Wood didn’t mince words about a future when cars drive themselves.

This is the biggest change that the automotive industry has ever faced,” she said.

Today’s automakers have a global market capitalization of a trillion dollars. Meanwhile, mobility-as-a-service companies as a whole (think ridesharing) are valued around $115 billion. If this number took into account expectations of a driverless future, it’d be higher.

The mobility-as-a-service market, which will slash the cost of “point-to-point” travel, could be worth more than today’s automakers combined, Wood said. Twice as much, in fact. As gross sales grow to something like $10 trillion in the early 2030s, her firm thinks some 20% of that will go to platform providers. It could be a $2 trillion opportunity.

Wood said a handful of companies will dominate the market, and Tesla is well positioned to be one of those companies. They are developing both the hardware, electric cars, and the software, self-driving algorithms. And although analysts tend to look at them as a just an automaker right now, that’s not all they’ll be down the road.

“We think if [Tesla] got even 5% of this global market for autonomous taxi networks, it should be worth another $100 billion today,” Wood said.

3. 3D Printing Goes Big With Finished Products at Scale

3D printing has become part of mainstream consciousness thanks, mostly, to the prospect of desktop printers for consumer prices. But these are imperfect, and the dream of an at-home replicator still eludes us. The manufacturing industry, however, is much closer to using 3D printers at scale.

Not long ago, we wrote about Carbon’s partnership with Adidas to mass-produce shoe midsoles. This is significant because, whereas industrial 3D printing has focused on prototyping to date, improving cost, quality, and speed are making it viable for finished products.

According to ARK, 3D printing may grow into a $41 billion market by 2020, and Wood noted a McKinsey forecast of as much as $490 billion by 2025. “McKinsey will be right if 3D printing actually becomes a part of the industrial production process, so end-use parts,” Wood said.

4. CRISPR Starts With Genetic Therapy, But It Doesn’t End There

According to ARK, the cost of genome editing has fallen 28x to 52x (depending on reagents) in the last four years. CRISPR is the technique leading the genome editing revolution, dramatically cutting time and cost while maintaining editing efficiency. Despite its potential, Wood said she isn’t hearing enough about it from investors yet.

“There are roughly 10,000 monogenic or single-gene diseases. Only 5% are treatable today,” she said. ARK believes treating these diseases is worth an annual $70 billion globally. Other areas of interest include stem cell therapy research, personalized medicine, drug development, agriculture, biofuels, and more.

Still, the big names in this area—Intellia, Editas, and CRISPR—aren’t on the radar.

“You can see if a company in this space has a strong IP position, as Genentech did in 1980, then the growth rates can be enormous,” Wood said. “Again, you don’t hear these names, and that’s quite interesting to me. We think there are very low expectations in that space.”

5. Mobile Transactions Could Grow 15x by 2020

By 2020, 75% of the world will own a smartphone, according to ARK. Amid smartphones’ many uses, mobile payments will be one of the most impactful. Coupled with better security (biometrics) and wider acceptance (NFC and point-of-sale), ARK thinks mobile transactions could grow 15x, from $1 trillion today to upwards of $15 trillion by 2020.

In addition, to making sharing economy transactions more frictionless, they are generally key to financial inclusion in emerging and developed markets, ARK says. And big emerging markets, such as India and China, are at the forefront, thanks to favorable regulations.

“Asia is leading the charge here,” Wood said. “You look at companies like Tencent and Alipay. They are really moving very quickly towards mobile and actually showing us the way.”

6. Robotics and Automation to Liberate $12 Trillion by 2035

Robots aren’t just for auto manufacturers anymore. Driven by continued cost declines and easier programming, more businesses are adopting robots. Amazon’s robot workforce in warehouses has grown from 1,000 to nearly 50,000 since 2014. “And they have never laid off anyone, other than for performance reasons, in their distribution centers,” Wood said.

But she understands fears over lost jobs.

This is only the beginning of a big round of automation driven by cheaper, smarter, safer, and more flexible robots. She agrees there will be a lot of displacement. Still, some commentators overlook associated productivity gains. By 2035, Wood said US GDP could be $12 trillion more than it would have been without robotics and automation—that’s a $40 trillion economy instead of a $28 trillion economy.

“This is the history of technology. Productivity. New products and services. It is our job as investors to figure out where that $12 trillion is,” Wood said. “We can’t even imagine it right now. We couldn’t imagine what the internet was going to do with us in the early ’90s.”

7. Blockchain and Cryptoassets: Speculatively Spectacular

Blockchain-enabled cryptoassets, such as Bitcoin, Ethereum, and Steem, have caused more than a stir in recent years. In addition to Bitcoin, there are now some 700 cryptoassets of various shapes and hues. Bitcoin still rules the roost with a market value of nearly $40 billion, up from just $3 billion two years ago, according to ARK. But it’s only half the total.

“This market is nascent. There are a lot of growing pains taking place right now in the crypto world, but the promise is there,” Wood said. “It’s a very hot space.”

Like all young markets, ARK says, cryptoasset markets are “characterized by enthusiasm, uncertainty, and speculation.” The firm’s blockchain products lead, Chris Burniske, uses Twitter—which is where he says the community congregates—to take the temperature. In a recent Twitter poll, 62% of respondents said they believed the market’s total value would exceed a trillion dollars in 10 years. In a followup, more focused on the trillion-plus crowd, 35% favored $1–$5 trillion, 17% guessed $5–$10 trillion, and 34% chose $10+ trillion.

Looking past the speculation, Wood believes there’s at least one big area blockchain and cryptoassets are poised to break into: the $500-billion, fee-based business of sending money across borders known as remittances.

“If you look at the Philippines-to-South Korean corridor, what you’re seeing already is that Bitcoin is 20% of the remittances market,” Wood said. “The migrant workers who are transmitting currency, they don’t know that Bitcoin is what’s enabling such a low-fee transaction. It’s the rails, effectively. They just see the fiat transfer. We think that that’s going to be a very exciting market.”

https://singularityhub.com/2017/06/16/the-disruptive-technologies-about-to-unleash-trillion-dollar-markets/

Seven Emerging Technologies That Will Change the World Forever

March 03, 2016

it_photo_124561

When someone asks me what I do, and I tell them that I’m a futurist, the first thing they ask “what is a futurist?” The short answer that I give is “I use current scientific research in emerging technologies to imagine how we will live in the future.”

However, as you can imagine the art of futurology and foresight is much more complex. I spend my days thinking, speaking and writing about the future, and emerging technologies. On any given day I might be in Warsaw speaking at an Innovation Conference, in London speaking at a Global Leadership Summit, or being interviewed by the Discovery Channel. Whatever the situation, I have one singular mission. I want you to think about the future.

How will we live in the future? How will emerging technologies change our lives, our economy and our businesses? We should begin to think about the future now. It will be here faster than you think.

Let’s explore seven current emerging technologies that I am thinking about that are set to change the world forever.

1. Age Reversal

We will see the emergence of true biological age reversal by 2025.

It may be extraordinarily expensive, complex and risky, but for people who want to turn back the clock, it may be worth it. It may sound like science fiction but the science is real, and it has already begun. In fact, according to new research published in Nature’s Scientific Reports, Professor Jun-Ichi Hayashi from the University of Tsukuba in Japan has already reversed ageing in human cell lines by “turning on or off”mitochondrial function.

Another study published in CELL reports that Australian and US researchers have successfully reversed the aging process in the muscles of mice. They found that raising nuclear NAD+ in old mice reverses pseudohypoxia and metabolic dysfunction. Researchers gave the mice a compound called nicotinamide adenine dinucleotide or NAD for a week and found that the age indicators in two-year-old mice were restored to that of six-month-old mice. That would be like turning a 60-year-old human into a 20-year-old!

How will our culture deal with age reversal? Will we set limits on who can age-reverse? Do we ban criminals from this technology? These are the questions we will face in a very complex future. One thing is certain, age reversal will happen and when it does it will change our species and our world forever.

2. Artificial General Intelligence

The robots are coming and they are going to eat your job for lunch. Worldwide shipments of multipurpose industrial robots are forecast to exceed 207,000 units in 2015, and this is just the beginning. Robots like Care-o-bot 4 and Softbank’s Pepper may be in homes, offices and hotels within the next year. These robots will be our personal servants, assistants and caretakers.

Amazon has introduced a new AI assistant called ECHO that could replace the need for a human assistant altogether. We already have robots and automation that can make pizza, serve beer, write news articles, scan our faces for diseases, and drive cars. We will see AI in our factories, hospitals, restaurants and hotels around the world by 2020.

3. Vertical Pink Farms

We are entering the techno-agricultural era. Agricultural science is changing the way we harvest our food. Robots and automation are going to play a decisive role in the way we hunt and gather. The most important and disruptive idea is what I call “Vertical PinkFarms” and it is set to decentralise the food industry forever.

The United Nations (UN) predicts by 2050 80% of the Earth’s population will live in cities. Climate change will also make traditional food production more difficult and less productive in the future. We will need more efficient systems to feed these hungry urban areas. Thankfully, several companies around the world are already producing food grown in these Vertical PinkFarms and the results are remarkable.

Vertical PinkFarms will use blue and red LED lighting to grow organic, pesticide free, climate controlled food inside indoor environments. Vertical PinkFarms use less water, less energy and enable people to grow food underground or indoors year round in any climate.

Traditional food grown on outdoor farms are exposed to the full visible light spectrum. This range includes Red, Orange, Yellow, Green, Blue and Violet. However, agricultural science is now showing us that O, Y, G and V are not necessary for plant growth. You only need R and B.LED lights are much more efficient and cooler than indoor florescent grow lights used in most indoor greenhouses. LED lights are also becoming less expensive as more companies begin to invest in this technology. Just like the solar and electric car revolution, the change will be exponential. By 2025, we may see massive Vertical PinkFarms in most major cities around the world. We may even see small Vertical PinkFarm units in our homes in the future.

4. Transhumanism

By 2035, even if a majority of humans do not self-identify as Transhuman, technically they will be. If we define any bio-upgrade or human enhancement as Transhumanism, then the numbers are already quite high and growing exponentially. According to a UN Telecom Agency report, around 6 billion people have cell phones. This demonstrates the ubiquitous nature of technology that we keep on or around our body.

As human bio-enhancements become more affordable, billions of humans will become Transhuman. Digital implants, mind-controlled exoskeletal upgrades, age reversal pills, hyper-intelligence brain implants and bionic muscle upgrades. All of these technologies will continue our evolution as humans.

Reconstructive joint replacements, spinal implants, cardiovascular implants, dental implants, intraocular lens and breast implants are all part of our human techno-evolution into this new Transhuman species.

5. Wearables and Implantables

Smartphones will fade into digital history as the high-resolution smart contact lens and corresponding in-ear audio plugs communicate with our wearable computers or “smart suits.” The digital world will be displayed directly on our eye in stunning interactive augmented beauty. The Ghent University’s Centre of Microsystems Technology in Belgium has recently developed a spherical curved LCD display that can be embedded in contact lenses. This enables the entire lens to display information.

The bridge to the smart contact starts with smart glasses, VR headsets and yes, the Apple watch. Wearable technologies are growing exponentially. New smart augmented glasses like Google Glass, RECON JET, METAPro, and Vuzix M100 Smart Glasses are just the beginning. In fact, CastAR augmented 3D glasses recently received over a million dollars in funding on Kickstarter. Their goal was only four hundred thousand. The market is ready for smart vision, and tech companies should move away from handheld devices if they want to compete.

The question of what is real and augmented will be irrelevant in the future. We will be able to create our reality with clusters of information cults that can only see certain augmented information realities if you are in these groups. All information will be instantaneously available in the augmented visual future.

6. Atmospheric Water Harvesting

California and parts of the south-west in the US are currently experiencing an unprecedented drought. If this drought continues, the global agricultural system could become unstable.

Consider this: California and Arizona account for about 98% of commercial lettuce production in the United States.Thankfully we live in a world filled with exponential innovation right now.

An emerging technology called Atmospheric Water Harvesting could save California and other arid parts of the world from severe drought and possibly change the techno-agricultural landscape forever.

Traditional agricultural farming methods consume 80% of the water in California. According to the California Agricultural Resource Directory of 2009, California grows 99% of the U.S. almonds, artichokes, and walnuts; 97% of the kiwis, apricots and plums; 96% of the figs, olives and nectarines; 95% of celery and garlic; 88% of strawberries and lemons; 74% of peaches; 69% of carrots; 62% of tangerines and the list goes on.

Several companies around the world are already using atmospheric water harvesting technologies to solve this problem. Each company has a different technological approach but all of them combined could help alleviate areas suffering from water shortages.

The most basic, and possibly the most accessible, form of atmospheric water harvesting technology works by collecting water and moisture from the atmosphere using micro netting. These micro nets collect water that drains down into a collection chamber. This fresh water can then be stored or channelled into homes and farms as needed.

A company called FogQuest is already successfully using micro netting or “fog collectors” to harvest atmospheric water in places like Ethiopia, Guatemala, Nepal, Chile and Morocco.
Will people use this technology or will we continue to drill for water that may not be there?

7. 3D Printing

Today we already have 3D printers that can print clothing, circuit boards, furniture, homes and chocolate. A company called BigRep has created a 3D printer called the BigRep ONE.2 that enables designers to create entire tables, chairs or coffee tables in one print. Did you get that?

You can now buy a 3D printer and print furniture!

Fashion designers like Iris van Herpen, Bryan Oknyansky, Francis Bitonti, Madeline Gannon, and Daniel Widrig have all broken serious ground in the 3D printed fashion movement. These avant-garde designs may not be functional for the average consumer so what is one to do for a regular tee shirt? Thankfully a new Field Guided Fabrication 3D printer called ELECTROLOOM has arrived that can print and it may put a few major retail chains out of business. The ELECTROLOOM enables anyone to create seamless fabric items on demand.

So what is next? 3D printed cars. Yes, cars. Divergent Microfactories (DM) has recently created a first 3D printed high-performance car called the Blade. This car is no joke. The Blade has a chassis weight of just 61 pounds, goes 0-60 MPH in 2.2 seconds and is powered by a 4-cylinder 700-horsepower bi-fuel internal combustion engine.

These are just seven emerging technologies on my radar. I have a list of hundreds of innovations that will change the world forever. Some sound like pure sci-fi but I assure you they are real. Are we ready for a world filled with abundance, age reversal and self-replicating AI robots? I hope so.

——

Image #2: This “pinkhouse” at Caliber Biotherapeutics in Bryan, Texas, grows 2.2 million plants under the glow of blue and red LEDs.
Courtesy of Caliber Therapeutics

http://ieet.org/index.php/IEET/more/scott20150929

Good Morning 2029! A World I Don’t Recognize

September 8, 2015

c6

The thing I love most about technology is that its progress is oftentimes plotted along an exponential curve.  As time moves forward the rate of progress increases by an ever expanding amount. Moore’s law is the most well known example of exponential growth within an industry. Moore’s law states that the number of transistors which can fit onto an integrated circuit will double approximately every 24 months. The crazy thing is that Moore’s law is beginning to carry over to pretty much every industry out there that relies on computational power. As computers became exponentially more capable, so do the technologies which use computers as a central brain.

Over the next 14 years, we will see numerous technologies converge, with the brains behind them all quickening their progression, meaning that the amount of technological change we will see by 2029 will likely surpass that of the change we have seen from 1974 to present. I thought it would be fun to take a guess at just how different our lives will be in a mere 14 years from now. Much of my prediction is based on substantially more powerful computer processing power, as well as the maturing of 3D printing as a major technology.  Although what’s written below is merely a guess, much of it is based on technologies which we know will eventually exist, or are in the early stages of development.

May 12th 2029

Today I woke up thanks to my new Apple Watch 9 health companion. The device determined that I was just ending a 90 minute sleep cycle, so it gently vibrated my wrist to wake me up. Boy do I feel energized after just 5 hours of sleep! From bed I quickly ran downstairs to 3D print my waffles which were infused with maple syrup, thanks to my new all-in-one Foodini 12 Food printer. The printer uses fresh ingredients to print me all three meals each day if I ask it to. It downloads recipes from the cloud and suggests meals I’d like based on my past reviews. My waffles took approximately 20 minutes to make, and were superb!

I was running a bit late for work because I decided to take part in a new virtual reality game called Home Run Derby 2029, in which I competed with my brother, 3000 miles away. I lost, but only by one homerun. I have to work on my swing a little more I guess when I get home tonight. I wasn’t too concerned with being 10 minutes behind in my morning routine, despite the fact that I still had to finish project for work before I arrived. I simply ordered an express business class vehicle from Google Cars from my Apple Watch, and within three minutes it was in my driveway. The vehicle was more like a traveling office, no steering wheel, or pedals, just an emergency button, and a whole suite of office supplies, including a 3D printer. I knew the drive to work would be a quick one since I had ordered the express vehicle this morning. Instead of a 45 minute drive it would take me just under 35 minutes. Thanks to the interconnected network that Google had set up, we are able to bypass any traffic via express lanes which will be communicated from the central processing hub. Thirty-five minutes just happened to be enough time for me to 3D c1print out the six models I needed done for an important meeting this morning with a trade partner.

When I arrived at work we were slammed, but I was prepared. I work for a robotics firm. We are currently in the process of manufacturing our new line of personal assistant robots. This product is called Robot Assistant Version 21. Almost every 5-6 months we come out with a newer, more versatile, better designed model. Unlike 10-15 years ago, it doesn’t take months to create new molds for our latest parts. We use a rapid manufacturing system provided to us by 3D Systems. We can print out new products with a few clicks of a button, at speeds which surpass injection molding techniques, and do it all on a massive scale.

After a long day of work, another vehicle picks me up. This time I ordered an entertainment package. For the next 45 minutes I wander though the dessert fighting off tribal enemies, in a virtual reality experience which is quite amazing. When I arrive home I quickly print myself a hamburger.  Although bioprinters are now available to print out meat that’s not from an actual cow, I used a beef insert that I took out of my fridge for this burger. Bioprinters are still way too expensive for household use.  It will likely be another five years or so before we can have such machines in our homes.

For the remainder of the evening I work on a project I have been spending a lot of time on. I am reconstructing a 1957 Chevy, piece by piece, with my carbon fiber based 3D printer. I’m halfway done the body. Once complete I will outsource some of the more intricate parts, such as the drive shaft, engine, and glass to Staples, who will print me out everything I need. It’s not cheap, but I love cars, and this is something I have always wanted to do. After working for a few hours I finally decide to turn in for the night, excited to see what awesome new technology tomorrow will give me an opportunity to discover.

http://3dprint.com/3582/future-technology-2029/

‘Pop-up’ fabrication technique trumps 3D printing

January 11, 2015

Researchers at Northwestern University and the University of Illinois at Urbana-Champaign have developed a simple new fabrication technique to create beautiful, complex 3D micro- and nanostructures with advantages over 3D printing for a variety of uses.

The technique mimics the action of a children’s pop-up book — starting as a flat two-dimensional structure and popping up into a more complex 3D structure. Using a variety of advanced materials, including silicon, the researchers produced more than 40 different geometric designs, including shapes resembling a peacock, flower, starburst, table, basket, tent, and starfish.

“In just one shot you get your structure,” said Northwestern’s Yonggang Huang, one of three co-corresponding authors on the study. “We first fabricate a two-dimensional structure on a stretched elastic material. Then we release the tension, and up pops a 3-D structure. The 2-D structure must have some place to go, so it pops up.”

The pop-up assembly technique is expected to be useful in building biomedical devices, sensors and electronics. It is the current cover story in the Jan. 9 issue of the journal Science.

Determining which designs are needed for specific applications will come in future research.

Huang, who led the portion of the research focused on theory, design and modeling, is the Joseph Cummings Professor of Civil and Environmental Engineering and a professor of mechanical engineering at Northwestern’s McCormick School of Engineering and Applied Science.

The new pop-up method, which is based on compression buckling, is fast and inexpensive, and can be used to build many different structures at one time. It uses many different materials, including silicon, incorporating different materials into one hybrid structure. It can be used to build structures on both micro- and nano-levels (down to a thickness of 100 nanometers), and can produce a wide range of different geometries.

With 3-D printing, on the other hand, it is difficult to integrate more than one material in a structure; it is almost impossible to print semiconductors or single crystalline metals; and speed is slow.

“We know how to design a 2D structure so that it pops up into the 3D structure we desire,” said Yihui Zhang, a co-corresponding author of the study. Zhang, who is a research assistant professor of civil and environmental engineering at Northwestern, came up with the initial idea.

Zhang worked together with the research group of John A. Rogers, the paper’s third co-corresponding author and a Swanlund Chair and professor of materials science and engineering at the University of Illinois, in developing the structural designs of 2-D structures to form various classes of 3-D configurations.

Process for deterministic assembly of 3D mesostructures of monocrystalline silicon from 2D precursors. (Credit: Sheng Xu et al./Science)

“A key, unique feature of these approaches to 3-D microarchitectures is that they work equally well with a very wide variety of materials, including the highest performance semiconductors, such as device-grade silicon, and fully formed, state-of-the-art planar devices and systems,” said Rogers. “We believe, as a result, that these ideas have relevance to nearly every class of microsystem technology — from electronics to photonics, optoelectronics, microelectromechanical structures and others.”

Rogers, who also is director of the Seitz Materials Research Laboratory, led the group that worked on the experimental and fabrication work of the different structures, as well as the device demonstration. Rogers, Huang and Zhang, together with postdoctoral fellows, led the development of the concepts in the 3-D fabrication approach.

Scientists at Zhejiang University, Hangzhou, China; Hanyang University, Seoul, Korea; and East China University of Science and Technology, Shanghai were also involved in the study. The U.S. Department of Energy supported the research.


Abstract for Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling

Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly. We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon. The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling. Demonstrations include experimental and theoretical studies of more than 40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-level configurations.