Exponential Growth Will Transform Humanity in the Next 30 Years

February 25, 2017

aaeaaqaaaaaaaambaaaajgqyndzhmtlilwu4yzctndlkns04mwrhltdjmdi4nwi3yzrlng

By Peter Diamantis

As we close out 2016, if you’ll allow me, I’d like to take a risk and venture into a topic I’m personally compelled to think about… a topic that will seem far out to most readers.

Today’s extraordinary rate of exponential growth may do much more than just disrupt industries. It may actually give birth to a new species, reinventing humanity over the next 30 years.

I believe we’re rapidly heading towards a human-scale transformation, the next evolutionary step into what I call a “Meta-Intelligence,” a future in which we are all highly connected—brain to brain via the cloud—sharing thoughts, knowledge and actions. In this post, I’m investigating the driving forces behind such an evolutionary step, the historical pattern we are about to repeat, and the implications thereof. Again, I acknowledge that this topic seems far-out, but the forces at play are huge and the implications are vast. Let’s dive in…

A Quick Recap: Evolution of Life on Earth in 4 Steps

About 4.6 billion years ago, our solar system, the sun and the Earth were formed.

Step 1: 3.5 billion years ago, the first simple life forms, called “prokaryotes,” came into existence.These prokaryotes were super-simple, microscopic single-celled organisms, basically a bag of cytoplasm with free-floating DNA. They had neither a distinct nucleus nor specialized organelles.

Step 2: Fast-forwarding one billion years to 2.5 billion years ago, the next step in evolution created what we call “eukaryotes”—life forms that distinguished themselves by incorporating biological ‘technology’ into themselves. Technology that allowed them to manipulate energy (via mitochondria) and information (via chromosomes) far more efficiently. Fast forward another billion years for the next step.

Step 3: 1.5 billion years ago, these early eukaryotes began working collaboratively and formed the first “multi-cellular life,” of which you and I are the ultimate examples (a human is a multicellular creature of 10 trillion cells).

Step 4: The final step I want to highlight happened some 400 million years ago, when lungfish crawled out of the oceans onto the shores, and life evolved from the oceans onto land.

The Next Stages of Human Evolution: 4 Steps

Today, at a massively accelerated rate—some 100 million times faster than the steps I outlined above—life is undergoing a similar evolution. In this next stage of evolution, we are going from evolution by natural selection (Darwinism) to evolution by intelligent direction. Allow me to draw the analogy for you:

Step 1: Simple humans today are analogous to prokaryotes. Simple life, each life form independent of the others, competing and sometimes collaborating.

Step 2: Just as eukaryotes were created by ingesting technology, humans will incorporate technology into our bodies and brains that will allow us to make vastly more efficient use of information (BCI) and energy.

Step 3: Enabled with BCI and AI, humans will become massively connected with each other and billions of AIs (computers) via the cloud, analogous to the first multicellular lifeforms 1.5 billion years ago. Such a massive interconnection will lead to the emergence of a new global consciousness, and a new organism I call the Meta-Intelligence.

Step 4: Finally, humanity is about to crawl out of the gravity well of Earth to become a multiplanetary species. Our journey to the moon, Mars, asteroids and beyond represents the modern-day analogy of the journey made by lungfish climbing out of the oceans some 400 million years ago.

The 4 Forces Driving the Evolution and Transformation of Humanity

Four primary driving forces are leading us towards our transformation of humanity into a meta-intelligence both on and off the Earth:

  1. We’re wiring our planet
  2. Emergence of brain-computer interface
  3. Emergence of AI
  4. Opening of the space frontier

Let’s take a look.

1. Wiring the Planet: Today, there are 2.9 billion people connected online. Within the next six to eight years, that number is expected to increase to nearly 8 billion, with each individual on the planet having access to a megabit-per-second connection or better. The wiring is taking place through the deployment of 5G on the ground, plus networks being deployed by Facebook, Google, Qualcomm, Samsung, Virgin, SpaceX and many others. Within a decade, every single human on the planet will have access to multi-megabit connectivity, the world’s information, and massive computational power on the cloud.

2. Brain-Computer Interface: A multitude of labs and entrepreneurs are working to create lasting, high-bandwidth connections between the digital world and the human neocortex (I wrote about that in detail here). Ray Kurzweil predicts we’ll see human-cloud connection by the mid-2030s, just 18 years from now. In addition, entrepreneurs like Bryan Johnson (and his company Kernel) are committing hundreds of millions of dollars towards this vision. The end results of connecting your neocortex with the cloud are twofold: first, you’ll have the ability to increase your memory capacity and/or cognitive function millions of fold; second, via a global mesh network, you’ll have the ability to connect your brain to anyone else’s brain and to emerging AIs, just like our cell phones, servers, watches, cars and all devices are becoming connected via the Internet of Things.

3. Artificial Intelligence/Human Intelligence: Next, and perhaps most significantly, we are on the cusp of an AI revolution. Artificial intelligence, powered by deep learning and funded by companies such as Google, Facebook, IBM, Samsung and Alibaba, will continue to rapidly accelerate and drive breakthroughs. Cumulative “intelligence” (both artificial and human) is the single greatest predictor of success for both a company or a nation. For this reason, beside the emerging AI “arms race,” we will soon see a race focused on increasing overall human intelligence. Whatever challenges we might have in creating a vibrant brain-computer interface (e.g., designing long-term biocompatible sensors or nanobots that interface with your neocortex), those challenges will fall quickly over the next couple of decades as AI power tools give us ever-increasing problem-solving capability. It is an exponential atop an exponential. More intelligence gives us the tools to solve connectivity and mesh problems and in turn create greater intelligence.

4. Opening the Space Frontier: Finally, it’s important to note that the human race is on the verge of becoming a multiplanetary species. Thousands of years from now, whatever we’ve evolved into, we will look back at these next few decades as the moment in time when the human race moved off Earth irreversibly. Today, billions of dollars are being invested privately into the commercial space industry. Efforts led by SpaceX are targeting humans on Mars, while efforts by Blue Origin are looking at taking humanity back to the moon, and plans by my own company, Planetary Resources, strive to unlock near-infinite resources from the asteroids.

In Conclusion

The rate of human evolution is accelerating as we transition from the slow and random process of “Darwinian natural selection” to a hyper-accelerated and precisely-directed period of “evolution by intelligent direction.” In this post, I chose not to discuss the power being unleashed by such gene-editing techniques as CRISPR-Cas9. Consider this yet another tool able to accelerate evolution by our own hand.

The bottom line is that change is coming, faster than ever considered possible. All of us leaders, entrepreneurs and parents have a huge responsibility to inspire and guide the transformation of humanity on and off the Earth. What we do over the next 30 years—the bridges we build to abundance—will impact the future of the human race for millennia to come. We truly live during the most exciting time ever in human history.

https://singularityhub.com/2016/12/21/exponential-growth-will-transform-humanity-in-the-next-30-years/

Advertisements

Nanoarray sniffs out and distinguishes ‘breathprints’ of multiple diseases

February 25, 2017

breathprint-system

An international team of 63 scientists in 14 clinical departments have identified a unique “breathprint” for 17 diseases with 86% accuracy and have designed a noninvasive, inexpensive, and miniaturized portable device that screens breath samples to classify and diagnose several types of diseases, they report in an open-access paper in the journal ACS Nano.

As far back as around 400 B.C., doctors diagnosed some diseases by smelling a patient’s exhaled breath, which contains nitrogen, carbon dioxide, oxygen, and a small amount of more than 100 other volatile chemical components. Relative amounts of these substances vary depending on the state of a person’s health. For example, diabetes creates a sweet breath smell. More recently, several teams of scientists have developed experimental breath analyzers, but most of these instruments focus on one disease, such as diabetes and melanoma, or a few diseases.

Detecting 17 diseases

The researchers developed an array of nanoscale sensors to detect the individual components in thousands of breath samples collected from 1404 patients who were either healthy or had one of 17 different diseases*, such as kidney cancer or Parkinson’s disease.

The team used mass spectrometry to identify the breath components associated with each disease. By analyzing the results with artificial intelligence techniques (binary classifiers), the team found that each disease produces a unique breathprint, based on differing amounts of 13 volatile organic chemical (VOC) components. They also showed that the presence of one disease would not prevent the detection of others — a prerequisite for developing a practical device to screen and diagnose various diseases.

Based on the research, the team designed an organic layer that functions as a sensing layer (recognition element) for adsorbed VOCs and an electrically conductive nanoarray based on resistive layers of molecularly modified gold nanoparticles and a random network of single-wall carbon nanotubes. The nanoparticles and nanotubes have different electrical conductivity patterns associated with different diseases.**

The authors received funding from the ERC and LCAOS of the European Union’s Seventh Framework Programme for Research and Technological Development, the EuroNanoMed Program under VOLGACORE, and the Latvian Council of Science.

* Lung cancer, colorectal cancer, head and neck cancer, ovarian cancer, bladder cancer, prostate cancer, kidney cancer, gastric cancer, Crohn’s disease, ulcerative colitis, irritable bowel syndrome, idiopathic Parkinson’s, atypical Parkinsonism, multiple sclerosis, pulmonary arterial hypertension, pre-eclampsia, and chronic kidney disease.

** During exposure to breath samples, interaction between the VOC components and the organic sensing layer changes the electrical resistance of the sensors. The relative change of sensor’s resistance at the peak (beginning), middle, and end of the exposure, as well as the area under the curve of the whole measurement were measured. All breath samples identified by the AI nanoarray were also examined using an independent lab-based analytical technique: gas chromatography linked with mass spectrometry.


Abstract of Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules

We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoarray was clinically assessed on breath samples collected from 1404 subjects having one of 17 different disease conditions included in the study or having no evidence of any disease (healthy controls). Blind experiments showed that 86% accuracy could be achieved with the artificially intelligent nanoarray, allowing both detection and discrimination between the different disease conditions examined. Analysis of the artificially intelligent nanoarray also showed that each disease has its own unique breathprint, and that the presence of one disease would not screen out others. Cluster analysis showed a reasonable classification power of diseases from the same categories. The effect of confounding clinical and environmental factors on the performance of the nanoarray did not significantly alter the obtained results. The diagnosis and classification power of the nanoarray was also validated by an independent analytical technique, i.e., gas chromatography linked with mass spectrometry. This analysis found that 13 exhaled chemical species, called volatile organic compounds, are associated with certain diseases, and the composition of this assembly of volatile organic compounds differs from one disease to another. Overall, these findings could contribute to one of the most important criteria for successful health intervention in the modern era, viz. easy-to-use, inexpensive (affordable), and miniaturized tools that could also be used for personalized screening, diagnosis, and follow-up of a number of diseases, which can clearly be extended by further development.

http://www.kurzweilai.net/nanoarray-sniffs-out-and-distinguishes-multiple-diseases?utm_source=KurzweilAI+Weekly+Newsletter&utm_campaign=599cd194cc-UA-946742-1&utm_medium=email&utm_term=0_147a5a48c1-599cd194cc-282129417

The Fourth Industrial Revolution Is Here

February 25, 2017

The Fourth Industrial Revolution is upon us and now is the time to act.

Everything is changing each day and humans are making decisions that affect life in the future for generations to come.

We have gone from Steam Engines to Steel Mills, to computers to the Fourth Industrial Revolution that involves a digital economy, artificial intelligence, big data and a new system that introduces a new story of our future to enable different economic and human models.

Will the Fourth Industrial Revolution put humans first and empower technologies to give humans a better quality of life with cleaner air, water, food, health, a positive mindset and happiness? HOPE…

http://www.huffingtonpost.com/craig-zamary/the-fourth-industrial-rev_3_b_12423658.html

New gene-editing technology partially restores vision in blind animals

February 25, 2017

shutterstock_353873630

Salk Institute researchers have discovered a holy grail of gene editing — the ability to, for the first time, insert DNA at a target location into the non-dividing cells that make up the majority of adult organs and tissues. The technique, which the team showed was able to partially restore visual responses in blind rodents, will open new avenues for basic research and a variety of treatments, such as for retinal, heart and neurological diseases.

“We are very excited by the technology we discovered because it’s something that could not be done before,” says Juan Carlos Izpisua Belmonte, a professor in Salk’s Gene Expression Laboratory and senior author of the paper published on November 16, 2016 in Nature. “For the first time, we can enter into cells that do not divide and modify the DNA at will. The possible applications of this discovery are vast.”

Until now, techniques that modify DNA — such as the CRISPR-Cas9 system — have been most effective in dividing cells, such as those in skin or the gut, using the cells’ normal copying mechanisms. The new Salk technology is ten times more efficient than other methods at incorporating new DNA into cultures of dividing cells, making it a promising tool for both research and medicine. But, more importantly, the Salk technique represents the first time scientists have managed to insert a new gene into a precise DNA location in adult cells that no longer divide, such as those of the eye, brain, pancreas or heart, offering new possibilities for therapeutic applications in these cells.

To achieve this, the Salk researchers targeted a DNA-repair cellular pathway called NHEJ (for “non-homologous end-joining”), which repairs routine DNA breaks by rejoining the original strand ends. They paired this process with existing gene-editing technology to successfully place new DNA into a precise location in non-dividing cells.

“Using this NHEJ pathway to insert entirely new DNA is revolutionary for editing the genome in live adult organisms,” says Keiichiro Suzuki, a senior research associate in the Izpisua Belmonte lab and one of the paper’s lead authors. “No one has done this before.”

First, the Salk team worked on optimizing the NHEJ machinery for use with the CRISPR-Cas9 system, which allows DNA to be inserted at very precise locations within the genome. The team created a custom insertion package made up of a nucleic acid cocktail, which they call HITI, or homology-independent targeted integration. Then they used an inert virus to deliver HITI’s package of genetic instructions to neurons derived from human embryonic stem cells.

“That was the first indication that HITI might work in non-dividing cells,” says Jun Wu, staff scientist and co-lead author. With that feat under their belts, the team then successfully delivered the construct to the brains of adult mice. Finally, to explore the possibility of using HITI for gene-replacement therapy, the team tested the technique on a rat model for retinitis pigmentosa, an inherited retinal degeneration condition that causes blindness in humans. This time, the team used HITI to deliver to the eyes of 3-week-old rats a functional copy of Mertk, one of the genes that is damaged in retinitis pigmentosa. Analysis performed when the rats were 8 weeks old showed that the animals were able to respond to light, and passed several tests indicating healing in their retinal cells.

“We were able to improve the vision of these blind rats,” says co-lead author Reyna Hernandez-Benitez, a Salk research associate. “This early success suggests that this technology is very promising.”

The team’s next steps will be to improve the delivery efficiency of the HITI construct. As with all genome editing technologies, getting enough cells to incorporate the new DNA is a challenge. The beauty of HITI technology is that it is adaptable to any targeted genome engineering system, not just CRISPR-Cas9. Thus, as the safety and efficiency of these systems improve, so too will the usefulness of HITI.

“We now have a technology that allows us to modify the DNA of non-dividing cells, to fix broken genes in the brain, heart and liver,” says Izpisua Belmonte. “It allows us for the first time to be able to dream of curing diseases that we couldn’t before, which is exciting.”


Story Source:

Materials provided by Salk Institute. Note: Content may be edited for style and length.