Ray Kurzweil’s Mind-Boggling Predictions for the Next 25 Years

January 26, 2015

In my new book BOLD, one of the interviews that I’m most excited about is with my good friend Ray Kurzweil.

Bill Gates calls Ray, “the best person I know at predicting the future of artificial intelligence.” Ray is also amazing at predicting a lot more beyond just AI.

This post looks at his very incredible predictions for the next 20+ years.

So who is Ray Kurzweil?

He has received 20 honorary doctorates, has been awarded honors from three U.S. presidents, and has authored 7 books (5 of which have been national bestsellers).

He is the principal inventor of many technologies ranging from the first CCD flatbed scanner to the first print-to-speech reading machine for the blind. He is also the chancellor and co-founder of Singularity University, and the guy tagged by Larry Page to direct artificial intelligence development at Google.

In short, Ray’s pretty smart… and his predictions are amazing, mind-boggling, and important reminders that we are living in the most exciting time in human history.

But, first let’s look back at some of the predictions Ray got right.

Predictions Ray has gotten right over the last 25 years

In 1990 (twenty-five years ago), he predicted…

…that a computer would defeat a world chess champion by 1998. Then in 1997, IBM’s Deep Blue defeated Garry Kasparov.

… that PCs would be capable of answering queries by accessing information wirelessly via the Internet by 2010. He was right, to say the least.

… that by the early 2000s, exoskeletal limbs would let the disabled walk. Companies like Ekso Bionics and others now have technology that does just this, and much more.

In 1999, he predicted…

… that people would be able talk to their computer to give commands by 2009. While still in the early days in 2009, natural language interfaces like Apple’s Siri and Google Now have come a long way. I rarely use my keyboard anymore; instead I dictate texts and emails.

… that computer displays would be built into eyeglasses for augmented reality by 2009. Labs and teams were building head mounted displays well before 2009, but Google started experimenting with Google Glass prototypes in 2011. Now, we are seeing an explosion of augmented and virtual reality solutions and HMDs. Microsoft just released the Hololens, and Magic Leap is working on some amazing technology, to name two.

In 2005, he predicted…

… that by the 2010s, virtual solutions would be able to do real-time language translation in which words spoken in a foreign language would be translated into text that would appear as subtitles to a user wearing the glasses. Well, Microsoft (via Skype Translate), Google (Translate), and others have done this and beyond. One app called Word Lens actually uses your camera to find and translate text imagery in real time.

Ray’s predictions for the next 25 years

The above represent only a few of the predictions Ray has made.

While he hasn’t been precisely right, to the exact year, his track record is stunningly good.

Here are some of my favorite of Ray’s predictions for the next 25+ years.

If you are an entrepreneur, you need to be thinking about these. Specifically, how are you going to capitalize on them when they happen? How will they affect your business?

By the late 2010s, glasses will beam images directly onto the retina. Ten terabytes of computing power (roughly the same as the human brain) will cost about $1,000.

By the 2020s, most diseases will go away as nanobots become smarter than current medical technology. Normal human eating can be replaced by nanosystems. The Turing test begins to be passable. Self-driving cars begin to take over the roads, and people won’t be allowed to drive on highways.

By the 2030s, virtual reality will begin to feel 100% real. We will be able to upload our mind/consciousness by the end of the decade.

By the 2040s, non-biological intelligence will be a billion times more capable than biological intelligence (a.k.a. us). Nanotech foglets will be able to make food out of thin air and create any object in physical world at a whim.

By 2045, we will multiply our intelligence a billionfold by linking wirelessly from our neocortex to a synthetic neocortex in the cloud.

I want to make an important point.

It’s not about the predictions.

It’s about what the predictions represent.

Ray’s predictions are a byproduct of his (and my) understanding of the power of Moore’s Law, more specifically Ray’s “Law of Accelerating Returns” and of exponential technologies.

These technologies follow an exponential growth curve based on the principle that the computing power that enables them doubles every two years.

exponential-growth-of-computing-1

As humans, we are biased to think linearly.

As entrepreneurs, we need to think exponentially.

I often talk about the 6D’s of exponential thinking

Most of us can’t see the things Ray sees because the initial growth stages of exponential, DIGITIZED technologies are DECEPTIVE.

Before we know it, they are DISRUPTIVE—just look at the massive companies that have been disrupted by technological advances in AI, virtual reality, robotics, internet technology, mobile phones, OCR, translation software, and voice control technology.

Each of these technologies DEMATERIALIZED, DEMONETIZED, and DEMOCRATIZED access to services and products that used to be linear and non-scalable.

Now, these technologies power multibillion-dollar companies and affect billions of lives.

http://singularityhub.com/2015/01/26/ray-kurzweils-mind-boggling-predictions-for-the-next-25-years/

 

 

 

Telomere extension turns back aging clock in cultured human cells, study finds

January 26, 2015

A new procedure can quickly and efficiently increase the length of human telomeres, the protective caps on the ends of chromosomes that are linked to aging and disease, according to scientists at the Stanford University School of Medicine.

Treated cells behave as if they are much younger than untreated cells, multiplying with abandon in the laboratory dish rather than stagnating or dying.

The procedure, which involves the use of a modified type of RNA, will improve the ability of researchers to generate large numbers of cells for study or drug development, the scientists say. Skin cells with telomeres lengthened by the procedure were able to divide up to 40 more times than untreated cells. The research may point to new ways to treat diseases caused by shortened telomeres.

Telomeres are the protective caps on the ends of the strands of DNA called chromosomes, which house our genomes. In young humans, telomeres are about 8,000-10,000 nucleotides long. They shorten with each cell division, however, and when they reach a critical length the cell stops dividing or dies. This internal “clock” makes it difficult to keep most cells growing in a laboratory for more than a few cell doublings.

‘Turning back the internal clock’

“Now we have found a way to lengthen human telomeres by as much as 1,000 nucleotides, turning back the internal clock in these cells by the equivalent of many years of human life,” said Helen Blau, PhD, professor of microbiology and immunology at Stanford and director of the university’s Baxter Laboratory for Stem Cell Biology. “This greatly increases the number of cells available for studies such as drug testing or disease modeling.”

A paper describing the research was published today in the FASEB Journal. Blau, who also holds the Donald E. and Delia B. Baxter Professorship, is the senior author. Postdoctoral scholar John Ramunas, PhD, of Stanford shares lead authorship with Eduard Yakubov, PhD, of the Houston Methodist Research Institute.

The researchers used modified messenger RNA to extend the telomeres. RNA carries instructions from genes in the DNA to the cell’s protein-making factories. The RNA used in this experiment contained the coding sequence for TERT, the active component of a naturally occurring enzyme called telomerase. Telomerase is expressed by stem cells, including those that give rise to sperm and egg cells, to ensure that the telomeres of these cells stay in tip-top shape for the next generation. Most other types of cells, however, express very low levels of telomerase.

Transient effect an advantage

The newly developed technique has an important advantage over other potential methods: It’s temporary. The modified RNA is designed to reduce the cell’s immune response to the treatment and allow the TERT-encoding message to stick around a bit longer than an unmodified message would. But it dissipates and is gone within about 48 hours. After that time, the newly lengthened telomeres begin to progressively shorten again with each cell division.

The transient effect is somewhat like tapping the gas pedal in one of a fleet of cars coasting slowly to a stop. The car with the extra surge of energy will go farther than its peers, but it will still come to an eventual halt when its forward momentum is spent. On a biological level, this means the treated cells don’t go on to divide indefinitely, which would make them too dangerous to use as a potential therapy in humans because of the risk of cancer.

The researchers found that as few as three applications of the modified RNA over a period of a few days could significantly increase the length of the telomeres in cultured human muscle and skin cells. A 1,000-nucleotide addition represents a more than 10 percent increase in the length of the telomeres. These cells divided many more times in the culture dish than did untreated cells: about 28 more times for the skin cells, and about three more times for the muscle cells.

“We were surprised and pleased that modified TERT mRNA worked, because TERT is highly regulated and must bind to another component of telomerase,” said Ramunas. “Previous attempts to deliver mRNA-encoding TERT caused an immune response against telomerase, which could be deleterious. In contrast, our technique is nonimmunogenic. Existing transient methods of extending telomeres act slowly, whereas our method acts over just a few days to reverse telomere shortening that occurs over more than a decade of normal aging. This suggests that a treatment using our method could be brief and infrequent.”

Potential uses for therapy

“This new approach paves the way toward preventing or treating diseases of aging,” said Blau. “There are also highly debilitating genetic diseases associated with telomere shortening that could benefit from such a potential treatment.”

Blau and her colleagues became interested in telomeres when previous work in her lab showed that the muscle stem cells of boys with Duchenne muscular dystrophy had telomeres that were much shorter than those of boys without the disease. This finding not only has implications for understanding how the cells function — or don’t function — in making new muscle, but it also helps explain the limited ability to grow affected cells in the laboratory for study.

The researchers are now testing their new technique in other types of cells.

“This study is a first step toward the development of telomere extension to improve cell therapies and to possibly treat disorders of accelerated aging in humans,” said John Cooke, MD, PhD. Cooke, a co-author of the study, formerly was a professor of cardiovascular medicine at Stanford. He is now chair of cardiovascular sciences at the Houston Methodist Research Institute.

“We’re working to understand more about the differences among cell types, and how we can overcome those differences to allow this approach to be more universally useful,” said Blau, who also is a member of the Stanford Institute for Stem Cell Biology and Regenerative Medicine.

“One day it may be possible to target muscle stem cells in a patient with Duchenne muscular dystrophy, for example, to extend their telomeres. There are also implications for treating conditions of aging, such as diabetes and heart disease. This has really opened the doors to consider all types of potential uses of this therapy.”


Story Source:

The above story is based on materials provided by Stanford University Medical Center. The original article was written by Krista Conger. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Ramunas, E. Yakubov, J. J. Brady, S. Y. Corbel, C. Holbrook, M. Brandt, J. Stein, J. G. Santiago, J. P. Cooke, H. M. Blau. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. The FASEB Journal, 2015; DOI: 10.1096/fj.14-25953

 

 

Global ENIGMA consortium cracks brain’s genetic codes for aging

January 26, 2015


In the largest collaborative study of the brain to date, about 300 researchers in a global consortium of 190 institutions identified eight common genetic mutations that appear to age the brain an average of three years.

The discovery could lead to targeted therapies and interventions for Alzheimer’s disease, autism, and other neurological conditions.

Led by the Keck School of Medicine of the University of Southern California (USC), an international team known as the Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) Network, pooled brain scans and genetic data worldwide to pinpoint genes that enhance or break down key brain regions in people from 33 countries.

This is the first high-profile study since the National Institutes of Health (NIH) launched its Big Data to Knowledge (BD2K) centers of excellence in 2014. The research was published Wednesday, Jan. 21, in the peer-reviewed journal Nature.

“Our global team discovered eight genes that may erode or boost brain tissue in people worldwide,” said Paul Thompson, Ph.D., Keck School of Medicine of USC professor and principal investigator of ENIGMA. ” Any change in those genes appears to alter your mental bank account or brain reserve by 2 or 3 percent. The discovery will guide research into more personalized medical treatments for Alzheimer’s, autism, depression and other disorders.”

The study could help identify people who would most benefit from new drugs designed to save brain cells, but more research is necessary to determine if the genetic mutations are implicated in disease.

The ENIGMA researchers screened millions of “spelling differences” in the genetic code to see which ones affected the size of key parts of the brain in magnetic resonance images (MRIs) from 30,717 individuals.

The MRI analysis focused on genetic data from seven regions of the brain that coordinate movement, learning, memory and motivation. The group identified eight genetic variants associated with decreased brain volume, several found in over one-fifth of the world’s population.  People who carry one of those eight mutations had, on average, smaller brain regions than brains without a mutation but of comparable age; some of the genes are implicated in cancer and mental illness.

In October 2014, the NIH invested nearly $32 million in its Big Data Initiative, creating 12 research hubs across the United States to improve the utility of biomedical data.

“The ENIGMA Center’s work uses vast datasets as engines of biomedical discovery; it shows how each individual’s genetic blueprint shapes the human brain,” said Philip Bourne, Ph.D., associate director for data science at the NIH. “This ‘Big Data’ alliance shows what the NIH Big Data to Knowledge (BD2K) Program envisions achieving with our 12 Centers of Excellence for Big Data Computing.”

Other USC co-authors include Derrek P. Hibar, Neda Jahanshad and Arthur Toga. ENIGMA was supported in part by a Consortium grant from the NIH BD2K Initiative, supported by a cross-NIH partnership, and by public and private agencies worldwide.


Abstract of Common genetic variants influence human subcortical brain structures

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

 

 

 

AI Has Arrived, and That Really Worries the World’s Brightest Minds

January 23, 2015

robots-AI-crop

On the first Sunday afternoon of 2015, Elon Musk took to the stage at a closed-door conference at a Puerto Rican resort to discuss an intelligence explosion. This slightly scary theoretical term refers to an uncontrolled hyper-leap in the cognitive ability of AI that Musk and physicist Stephen Hawking worry could one day spell doom for the human race.

That someone of Musk’s considerable public stature was addressing an AI ethics conference—long the domain of obscure academics—was remarkable. But the conference, with the optimistic title “The Future of AI: Opportunities and Challenges,” was an unprecedented meeting of the minds that brought academics like Oxford AI ethicist Nick Bostrom together with industry bigwigs like Skype founder Jaan Tallinn and Google AI expert Shane Legg.

Musk and Hawking fret over an AI apocalypse, but there are more immediate threats. In the past five years, advances in artificial intelligence—in particular, within a branch of AI algorithms called deep neural networks—are putting AI-driven products front-and-center in our lives. Google, Facebook, Microsoft and Baidu, to name a few, are hiring artificial intelligence researchers at an unprecedented rate, and putting hundreds of millions of dollars into the race for better algorithms and smarter computers.

AI problems that seemed nearly unassailable just a few years ago are now being solved. Deep learning has boosted Android’s speech recognition, and given Skype Star Trek-like instant translation capabilities. Google is building self-driving cars, and computer systems that can teach themselves to identify cat videos. Robot dogs can now walk very much like their living counterparts.

“Things like computer vision are starting to work; speech recognition is starting to work There’s quite a bit of acceleration in the development of AI systems,” says Bart Selman, a Cornell professor and AI ethicist who was at the event with Musk. “And that’s making it more urgent to look at this issue.”

Given this rapid clip, Musk and others are calling on those building these products to carefully consider the ethical implications. At the Puerto Rico conference, delegates signed an open letter pledging to conduct AI research for good, while “avoiding potential pitfalls.” Musk signed the letter too. “Here are all these leading AI researchers saying that AI safety is important,” Musk said yesterday. “I agree with them.”

Google Gets on Board

Nine researchers from DeepMind, the AI company that Google acquired last year, have also signed the letter. The story of how that came about goes back to 2011, however. That’s when Jaan Tallinn introduced himself to Demis Hassabis after hearing him give a presentation at an artificial intelligence conference. Hassabis had recently founded the hot AI startup DeepMind, and Tallinn was on a mission. Since founding Skype, he’d become an AI safety evangelist, and he was looking for a convert. The two men started talking about AI and Tallinn soon invested in DeepMind, and last year, Google paid $400 million for the 50-person company. In one stroke, Google owned the largest available talent pool of deep learning experts in the world. Google has kept its DeepMind ambitions under wraps—the company wouldn’t make Hassabis available for an interview—but DeepMind is doing the kind of research that could allow a robot or a self-driving car to make better sense of its surroundings.

That worries Tallinn, somewhat. In a presentation he gave at the Puerto Rico conference, Tallinn recalled a lunchtime meeting where Hassabis showed how he’d built a machine learning system that could play the classic ’80s arcade gameBreakout. Not only had the machine mastered the game, it played it a ruthless efficiency that shocked Tallinn. While “the technologist in me marveled at the achievement, the other thought I had was that I was witnessing a toy model of how an AI disaster would begin, a sudden demonstration of an unexpected intellectual capability,” Tallinn remembered.

https://www.youtube.com/watch?v=EfGD2qveGdQ

Deciding the dos and don’ts of scientific research is the kind of baseline ethical work that molecular biologists did during the 1975 Asilomar Conference on Recombinant DNA, where they agreed on safety standards designed to prevent manmade genetically modified organisms from posing a threat to the public. The Asilomar conference had a much more concrete result than the Puerto Rico AI confab.

At the Puerto Rico conference, attendees signed a letter outlining the research priorities for AI—study of AI’s economic and legal effects, for example, and the security of AI systems. And yesterday, Elon Musk kicked in $10 million to help pay for this research. These are significant first steps toward keeping robots from ruining the economy or generally running amok. But some companies are already going further. Last year, Canadian roboticists Clearpath Robotics promised not to build autonomous robots for military use. “To the people against killer robots: we support you,” Clearpath Robotics CTO Ryan Gariepy wrote on the company’s website.

Pledging not to build the Terminator is but one step. AI companies such as Google must think about the safety and legal liability of their self-driving cars, whether robots will put humans out of a job, and the unintended consequences of algorithms that would seem unfair to humans. Is it, for example, ethical for Amazon to sell products at one price to one community, while charging a different price to a second community? What safeguards are in place to prevent a trading algorithm from crashing the commodities markets? What will happen to the people who work as bus drivers in the age of self-driving vehicles?

TO THE PEOPLE AGAINST KILLER ROBOTS: WE SUPPORT YOU.

Itamar Arel is the founder of Binatix, a deep learning company that makes trades on the stock market. He wasn’t at the Puerto Rico conference, but he signed the letter soon after reading it. To him, the coming revolution in smart algorithms and cheap, intelligent robots needs to be better understood. “It is time to allocate more resources to understanding the societal impact of AI systems taking over more blue-collar jobs,” he says. “That is a certainty, in my mind, which will take off at a rate that won’t necessarily allow society to catch up fast enough. It is definitely a concern.”

Predictions of a destructive AI super-mind may get the headlines, but it’s these more prosaic AI worries that need to be addressed within the next few years, says Murray Shanahan, a professor of cognitive robotics with Imperial College in London. “It’s hard to predict exactly what’s going on, but we can be pretty sure that they are going to affect society.”

 

http://www.wired.com/2015/01/ai-arrived-really-worries-worlds-brightest-minds/

Nanobot micromotors deliver medical payload in living creature for the first time

January 22, 2015

Micro-motor powered nanobots have delivered a nanoparticle compound directly into the gut ...

Researchers working at the University of California, San Diego have claimed a world first in proving that artificial, microscopic machines can travel inside a living creature and deliver their medicinal load without any detrimental effects. Using micro-motor powered nanobots propelled by gas bubbles made from a reaction with the contents of the stomach in which they were deposited, these miniature machines have been successfully deployed in the body of a live mouse.

The picayune robots used in the research were tubular, about 20 micrometers long, 5 micrometers in diameter, and coated in zinc. Once the mouse ingested these tiny tubes and they reached the stomach, the zinc reacted with the hydrochloric acid in the digestive juices to produce bubbles of hydrogen which then propelled the nanobots along like miniature rockets.

Reaching speeds of up to 60 micrometers per second, the nanobots headed outwards toward the stomach lining where they then embedded themselves, dissolved, and delivered a nanoparticle compound directly into the gut tissue.

According to the researchers, of all the nanobots deployed in the stomach of the mouse, those that reached the stomach walls remained attached to the lining for a full 12 hours after ingestion, thereby proving their effectiveness and robust nature.

Further, after the mouse was eventually euthanized and the stomach was dissected and examined, the presence of the nanobots also showed no signs of raised toxicity levels or tissue damage. According to the researchers this was in line with their expectations, particularly given that zinc is effectively also a multipurpose nutrient.

While nanobots have been used before on organic tissue – such as in thedestruction of the Hepatitis C virus – and still others have been designed to be propelled using external forces within a living creature, the University of California micromachines are the very first self-propelled, nanoparticle delivering nanobots ever. And it is this fact that makes the research team believe that its success so far merits further research and cites the fact that this is now the beginning of a proven method to deliver targeted drug administration.

For everyone else, this is exciting technology that may well help to medically treat human beings in the not-too-distant future. Of course, this is early days in this research and a plethora of continuously successful tests will need to be run before it can even be considered by the likes of the US Food and Drug Administration to approve its use in people. But these first steps are vital in what may one day be a commonplace, targeted, and safe alternative to traditional high-dose medications.

No announcement has been made regarding further tests or the possibility of human-based trials.

The research was published in the journal ACS Nano.

Source: UC, San Diego

 

 

 

A Brain-Computer Interface That Works Wirelessly

January 18, 2015

A wireless brain interface uses the head-worn transmitter, shown

A few paralyzed patients could soon be using a wireless brain-computer interface able to stream their thought commands as quickly as a home Internet connection.

After more than a decade of engineering work, researchers at Brown University and a Utah company, Blackrock Microsystems, have commercialized a wireless device that can be attached to a person’s skull and transmit via radio thought commands collected from a brain implant. Blackrock says it will seek clearance for the system from the U.S. Food and Drug Administration, so that the mental remote control can be tested in volunteers, possibly as soon as this year.

The device was developed by a consortium, called BrainGate, which is based at Brown and was among the first to place implants in the brains of paralyzed people and show that electrical signals emitted by neurons inside the cortex could be recorded, then used to steer a wheelchair or direct a robotic arm (see “Implanting Hope”).

A major limit to these provocative experiments has been that patients can only use the prosthetic with the help of a crew of laboratory assistants. The brain signals are collected through a cable screwed into a port on their skull, then fed along wires to a bulky rack of signal processors. “Using this in the home setting is inconceivable or impractical when you are tethered to a bunch of electronics,” says Arto Nurmikko, the Brown professor of engineering who led the design and fabrication of the wireless system.

The new interface does away with much of that wiring by processing brain data inside a device about the size of an automobile gas cap. It is attached to the skull and wired to electrodes inside the brain. Inside the device is a processor to amplify the faint electrical spikes emitted by neurons, circuits to digitize the information, and a radio to beam it a distance of a few meters to a receiver. There, the information is available as a control signal; say to move a cursor across a computer screen.

The device transmits data out of the brain at rate of 48 megabits per second, about as fast as a residential Internet connection, says Nurmikko. It uses about 30 milliwatts of power—a fraction of what a smartphone uses—and is powered by a battery.

Scientists have prototyped wireless brain-computer interfaces before, and some simpler transmitters have been sold for animal research. “But there’s just no such thing as a device that has this many inputs and spits out megabits and megabits of data. It’s fundamentally a new kind of device,” says Cindy Shestek, an assistant professor of biomedical engineering at the University of Michigan.

Although the implant can transmit the equivalent of about 200 DVDs’ worth of data a day, that’s not much information compared to what the brain generates in executing even the simplest movement. Of the billions of neurons in the human cortex, scientists have never directly measured more than 200 or so simultaneously. “You and I are using our brains as petabyte machines,” says Nurmikko. “By that standard, 100 megabits per second is going to look very modest.”

Blackrock has begun selling the wireless processor, which it calls “Cereplex-W” and costs about $15,000, to research labs that study primates. Tests in humans could happen quickly, says Florian Solzbacher, a University of Utah professor who is the owner and president of Blackrock. The Brown scientists have plans to try it on paralyzed patients, but haven’t yet done so.

Currently, a half dozen or so paralyzed people, including some in the late stages of ALS, are taking part in BrainGate trials using the older technology. In those studies, underway in Boston and California, the implant that makes contact with the brain is a small array of needle-like electrodes carved from silicon. Also sold by Blackrock, it is commonly called the Utah array. To establish a brain-machine interface, that array is pushed into the tissue of the cerebral motor cortex, where its tips record the firing patterns from 100 neurons or more at once.

Those tiny blasts of electricity, scientists have found, can be decoded into a fairly precise readout of what movement an animal, or a person, is intending. Decoding those signals has permitted hundreds of monkeys, as well as a growing number of paralyzed volunteers, to control a computer mouse, or manipulate objects with a robotic arm, sometimes with surprising dexterity (see “The Thought Experiment”).

But the BrainGate technology will never turn into actual medicine until it’s greatly simplified and made more reliable. The head-mounted wireless module is a step toward that goal. Eventually, scientists say, all the electronics will have to be implanted completely inside the body, with no wires reaching through the skin, since that can lead to infections. Last year, the Brown researchers reported testing a prototype of a fully implanted interface, with the electronics housed inside a titanium can that can be sealed under the scalp. That device is not yet commercialized.

“If they could put it in under the skin, then everything you see in the videos could be done at home,” says Shestek, referring to films of patients using mental control to move robotic arms. “That wire going through the skin is the most dangerous part of the system.”

http://www.technologyreview.com/news/534206/a-brain-computer-interface-that-works-wirelessly/

Expanding the brain achieves super-resolution with ordinary confocal microscopes

January 18, 2015

Expansion microscopy enables researchers to resolve details down to about 70 nanometers in this enlarged hippocampus brain segment (right), compared to about 300 nanometers without expansion (left), the previous limit with a conventional microscope (credit: Ed Boyden, Fei Chen, Paul Tillberg)

 

Engineers at the MIT-based Center for Brains, Minds and Machines have developed a way to make a brain expand to about four and a half times its usual size, allowing nanoscale structures to appear sharp with an ordinary confocal microscope.

The new “expansion microscopy” technique uses an expandable polymer and water to  enable researchers to achieve “super-resolution” to resolve details down to about 70 nanometers laterally, compared to about 300 nanometers (violet light), the previous limit with a diffraction-limited conventional microscope, and without the slower performance of existing “super-resolution” microscopes.

Shown here is a 3D image of mouse brain tissue taken using super-resolution microscopy, a technique that uses fluorescent molecules to resolve tiny brain details of a portion of the hippocampus, showing neurons (green)and synapses (blue and red) (credit: Ed Boyden, Fei Chen, Paul Tillberg)

 

The MIT engineers who developed the technique, Fei Chen, Paul Tillberg and Edward Boyden, assert it offers the ability to use conventional microscopes to image large, intact, 3D brain structures with nanoscale precision for the first time.

“Expansion microscopy may provide a key tool for comprehensive, precise, circuit-wide, brain mapping,” Boyden said. The team has demonstrated the process on mouse, fruit fly, and zebrafish brains and is working with another team to apply it to human tissue.

Dendrites, treelike extensions of the neuron cell body, are the primary sites for receiving and integrating information from other neurons. This 3D animation of dendrites in a mouse brain was taken using super-resolution imaging. (Credit: Ed Boyden, Fei Chen, Paul Tillberg)

 

Boyden adds that the process may be useful beyond the brain to other parts of the body. Many types of biological processes involve nanoscale interactions across large systems, such as cancer metastasis and immunological responses.

“This clever technique, which bypasses the limitations of traditional techniques for brain imaging, has the potential to be a powerful new tool to help researchers map and understand the brain,” said Pramod Khargonekar, NSF assistant director for the Engineering Directorate, which supports an array of neuroengineering projects.

The new method is another advance in brain imaging that brings researchers closer to illuminating the entire brain and nervous system, one of today’s greatest engineering challenges. Development of expansion microscopy was detailed in the Jan. 15 issue of Science.

The Center for Brains, Minds and Machines is an NSF science and technology center funded in 2013 as part of NSF’s continuing support for the advancement of fundamental brain research.


Abstract of Expansion microscopy

In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that, by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable super-resolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ~70 nm lateral resolution in both cultured cells and brain tissue, performing three-color super-resolution imaging of ~107 μm3 of the mouse hippocampus with a conventional confocal microscope.

 

Machine learning helps Stanford physicists predict dangerous solar flares earlier

January 16, 2015

This solar flare was captured Jan. 14 by NASA’s Solar Dynamics Observatory. Stanford physicists are using artificial intelligence techniques in an attempt to predict such flares. (Credit: NASA/SDO and the AIA; EVE; and HMI science teams)

Using artificial intelligence techniques to forecast solar flares*, Stanford solar physicists have automated the analysis of the largest-ever set of solar observations, using data from the Solar Dynamics Observatory (SDO).

Solar physicists identify which features are most useful for predicting solar flares, which requires processing more data — some 1.5 terabytes a day — than any other satellite in NASA history, according to solar physicistsMonica Bobra and Sebastien Couvidat.

Their study, using an instrument aboard SDO, theHelioseismic Magnetic Imager (HMI), collects vector magnetic fields and other observations of the entire surface of the sun almost continuously. The Stanford Solar Observatories Group, headed by physics ProfessorPhil Scherrer, processes and stores the SDO data.

Machine learning for earlier solar-flare warnings

The physicists decided to the use this data to predict the strength of solar flares, such as M or X, using machine language. (M-class flares can cause minor radiation storms that might endanger astronauts and cause brief radio blackouts at Earth’s poles. X-class flares are the most powerful.)

To do that, the researchers first catalogued flaring and non-flaring regions from a database of more than 2,000 active regions and then characterized those regions by 25 features such as energy, current and field gradient. They then fed the machine-learning system 70 percent of the data, to train it to identify relevant features. And then they used the system to analyze the remaining 30 percent of the data to test its accuracy in predicting solar flares.

Machine learning confirmed that the topology of the magnetic field and the energy stored in the magnetic field are very relevant to predicting solar flares. Using just a few of the 25 features, machine learning discriminated between active regions that would flare and those that would not flare. Although others have used different methods to come up with similar results, machine learning provides a significant improvement because automated analysis is faster and could provide earlier warnings of solar flares.

However, this study only used information from the solar surface. That would be like trying to predict Earth’s weather from only surface measurements like temperature, without considering the wind and cloud cover. The next step in solar flare prediction would be to incorporate data from the sun’s atmosphere, Bobra said.

*Solar flares can release the energy equivalent of many atomic bombs, enough to cut out satellite communications and damage power grids on Earth, 93 million miles away. The flares arise from twisted magnetic fields that occur all over the sun’s surface, and they increase in frequency every 11 years, a cycle that is now at its maximum.


Abstract for Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm

We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory‘s Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.

 

 

 

Live for ever: Scientists say they’ll soon extend life ‘well beyond 120’

January 13, 2015

Ernestine Shepherd

Bodybuilder Ernestine Shepherd, 78, attributes her youthful looks to diet and exercise. But scientists now say they will soon be able to do much more with drugs. Photograph: Lynn Goldsmith/Rex

In Palo Alto in the heart of Silicon Valley, hedge fund manager Joon Yun is doing a back-of-the-envelope calculation. According to US social security data, he says, the probability of a 25-year-old dying before their 26th birthday is 0.1%. If we could keep that risk constant throughout life instead of it rising due to age-related disease, the average person would – statistically speaking – live 1,000 years. Yun finds the prospect tantalising and even believable. Late last year he launched a $1m prize challenging scientists to “hack the code of life” and push human lifespan past its apparent maximum of about 120 years (the longest known/confirmed lifespan was 122 years).

Yun believes it is possible to “solve ageing” and get people to live, healthily, more or less indefinitely. His Palo Alto Longevity Prize, which 15 scientific teams have so far entered, will be awarded in the first instance for restoring vitality and extending lifespan in mice by 50%. But Yun has deep pockets and expects to put up more money for progressively greater feats. He says this is a moral rather than personal quest. Our lives and society are troubled by growing numbers of loved ones lost to age-related disease and suffering extended periods of decrepitude, which is costing economies. Yun has an impressive list of nearly 50 advisers, including scientists from some of America’s top universities.

Yun’s quest – a modern version of the age old dream of tapping the fountain of youth – is emblematic of the current enthusiasm to disrupt death sweeping Silicon Valley. Billionaires and companies are bullish about what they can achieve. In September 2013 Google announced the creation of Calico, short for the California Life Company. Its mission is to reverse engineer the biology that controls lifespan and “devise interventions that enable people to lead longer and healthier lives”. Though much mystery surrounds the new biotech company, it seems to be looking in part to develop age-defying drugs. In April 2014 it recruited Cynthia Kenyon, a scientist acclaimed for work that included genetically engineering roundworms to live up to six times longer than normal, and who has spoken of dreaming of applying her discoveries to people. “Calico has the money to do almost anything it wants,” says Tom Johnson, an earlier pioneer of the field now at the University of Colorado who was the first to find a genetic effect on longevity in a worm.

In March 2014, pioneering American biologist and technologist Craig Venter– along with the tech entrepreneur founder of the X Prize Foundation, Peter Diamandis – announced a new company called Human Longevity Inc. It isn’t aimed at developing anti-ageing drugs or competing with Calico, says Venter. But it plans to create a giant database of 1 million human genome sequences by 2020, including from supercentenarians. Venter says that data should shed important new light on what makes for a longer, healthier life, and expects others working on life extension to use his database. “Our approach can help Calico immensely and if their approach is successful it can help me live longer,” explains Venter. “We hope to be the reference centre at the middle of everything.”

In an office not far from Google’s headquarters in Mountain View, with a beard reaching almost to his navel, Aubrey de Grey is enjoying the new buzz about defeating ageing. For more than a decade, he has been on a crusade to inspire the world to embark on a scientific quest to eliminate ageing and extend healthy lifespan indefinitely (he is on the Palo Alto Longevity Prize board). It is a difficult job because he considers the world to be in a “pro-ageing trance”, happy to accept that ageing is unavoidable, when the reality is that it’s simply a “medical problem” that science can solve. Just as a vintage car can be kept in good condition indefinitely with periodic preventative maintenance, so there is no reason why, in principle, the same can’t be true of the human body, thinks de Grey. We are, after all, biological machines, he says.

His claims about the possibilities (he has said the first person who will live to 1,000 years is probably already alive), and some unconventional and unproven ideas about the science behind ageing, have long made de Grey unpopular with mainstream academics studying ageing. But the appearance of Calico and others suggests the world might be coming around to his side, he says. “There is an increasing number of people realising that the concept of anti-ageing medicine that actually works is going to be the biggest industry that ever existed by some huge margin and that it just might be foreseeable.”

Since 2009, de Grey has been chief scientific officer at his own charity, theStrategies for Engineered Negligible Senescence (Sens) Research Foundation. Including an annual contribution (about $600,000 a year) from Peter Thiel, a billionaire Silicon Valley venture capitalist, and money from his own inheritance, he funds about $5m of research annually. Some is done in-house, the rest sponsored at outside institutions. (Even his critics say he funds some good science.)

Aubrey de Grey is chief scientific officer of his own charity, the Strategies for Engineered Negligible Senescence (Sens) Research Foundation. Photograph: Tim E White/Rex

De Grey isn’t the only one who sees a new flowering of anti-ageing research. “Radical life extension isn’t consigned to the realm of cranks and science fiction writers any more,” says David Masci, a researcher at the Pew Research Centre, who recently wrote a report on the topic looking at the scientific and ethical dimensions of radical life extension. “Serious people are doing research in this area and serious thinkers are thinking about this .”

Although funding pledges have been low compared to early hopes, billionaires – not just from the technology industry – have long supported research into the biology of ageing. Yet it has mostly been aimed at extending “healthspan”, the years in which you are free of frailty or disease, rather than lifespan, although an obvious effect is that it would also be extended (healthy people after all live longer).

“If a consequence of increasing health is that life is extended, that’s a good thing, but the most important part is keeping people healthy as long as possible,” says Kevin Lee, a director of the Ellison Medical Foundation, founded in 1997 by tech billionaire Larry Ellison, and which has been the field’s largest private funder, spending $45m annually. (The Paul F Glenn Foundation for Medical Research is another.) Whereas much biomedical research concentrates on trying to cure individual diseases, say cancer, scientists in this small field hunt something larger. They investigate the details of the ageing process with a view to finding ways to prevent it at its root, thereby fending off the whole slew of diseases that come along with ageing. Life expectancy has risen in developed countries from about 47 in 1900 to about 80 today, largely due to advances in curing childhood diseases. But those longer lives come with their share of misery. Age-related chronic diseases such as heart disease, cancer, stroke and Alzheimer’s are more prevalent than ever.

The standard medical approach – curing one disease at a time – only makes that worse, says Jay Olshansky, a sociologist at the University of Chicago School of Public Health who runs a project called the Longevity Dividend Initiative, which makes the case for funding ageing research to increase healthspan on health and economic grounds. “I would like to see a cure for heart disease or cancer,” he says. “But it would lead to a dramatic escalation in the prevalence of Alzheimer’s disease.”

By tackling ageing at the root they could be dealt with as one, reducing frailty and disability by lowering all age-related disease risks simultaneously, says Olshansky. Evidence is now building that this bolder, age-delaying approach could work. Scientists have already successfully intervened in ageing in a variety of animal species and researchers say there is reason to believe it could be achieved in people. “We have really turned a corner,” says Brian Kennedy, director of the Buck Institute for Research on Ageing, adding that five years ago the scientific consensus was that ageing research was interesting but unlikely to lead to anything practical. “We’re now at the point where it’s easy to extend the lifespan of a mouse. That’s not the question any more, it’s can we do this in humans? And I don’t see any reason why we can’t,” says David Sinclair, a researcher based at Harvard.

Reason for optimism comes after several different approaches have yielded promising results. Some existing drugs, such as the diabetes drug metformin, have serendipitously turned out to display age-defying effects, for example. Several drugs are in development that mimic the mechanisms that cause lab animals fed carefully calorie-restricted diets to live longer. Others copy the effects of genes that occur in long-lived people. One drug already in clinical trials is rapamycin, which is normally used to aid organ transplants and treat rare cancers. It has been shown to extend the life of mice by 25%, the greatest achieved so far with a drug, and protect them against diseases of ageing including cancer and neurodegeneration.

A recent clinical trial by Novartis, in healthy elderly volunteers in Australia and New Zealand, found a variant of the drug enhanced their response to flu vaccine by 20% – our immunity to flu being something that declines with old age.

“[This was] the first [trial] to take a drug suspected to slow ageing, and examine whether it slows or reverses a property of ageing in older, healthy individuals,” says Kennedy. Other drugs set to be tested in humans are compounds inspired by resveratrol, a compound found in red wine. Some scientists believe it is behind the “French paradox” that French people have a low incidence of heart disease despite eating comparatively rich diets.

In 2003, Sinclair published evidence that high doses of resveratrol extend the healthy lives of yeast cells. After Sirtris, a company co-founded by Sinclair, showed that resveratrol-inspired compounds had favourable effects in mice, it was bought by drug giant GlaxoSmithKline for $720m in 2008. Although development has proved more complicated than first thought, GSK is planning a large clinical trial this year, says Sinclair. He is now working on another drug that has a different way of activating the same pathway.

One of the more unusual approaches being tested is using blood from the young to reinvigorate the old. The idea was borne out in experiments which showedblood plasma from young mice restored mental capabilities of old mice. A human trial under way is testing whether Alzhemier’s patients who receive blood transfusions from young people experience a similar effect. Tony Wyss-Coray, a researcher at Stanford leading the work, says that if it works he hopes to isolate factors in the blood that drive the effect and then try to make a drug that does a similar thing. (Since publishing his work in mice, many “healthy, very rich people” have contacted Wyss-Coray wondering if it might help them live longer.)

James Kirkland, a researcher who studies ageing at the Mayo Clinic, says he knows of about 20 drugs now – more than six of which had been written up in scientific journals – that extended the lifespan or healthspan of mice. The aim is to begin tests in humans, but clinical studies of ageing are difficult because of the length of our lives, though there are ways around this such as testing the drugs against single conditions in elderly patients and looking for signs of improvements in other conditions at the same time. Quite what the first drug will be, and what it will do, is unclear. Ideally, you might take a single pill that would delay ageing in every part of your body. But Kennedy notes that in mice treated with rapamycin, some age-related effects, such as cataracts, don’t slow down. “I don’t know any one drug is going to do everything,” he says. As to when you might begin treatment, Kennedy imagines that in future you could start treatment sometime between the age of 40 and 50 “because it keeps you healthy 10 years longer”.

With treatments at such an early stage, guesses as to when they might arrive or how far they will stretch human longevity can only be that. Many researchers refuse to speculate. But Kirkland says the informal ambition in his field is to increase healthspan by two to three years in the next decade or more. (The EU has an official goal of adding two years to healthspan by 2020). Beyond that, what effects these drugs might have on extending our healthy lives is even harder to predict. A recent report by UK Human Longevity Panel, a body of scientists convened by insurer Legal and General, based on interviews with leading figures in the field, said: “There was disagreement about how far the maximum lifespan could increase, with some experts believing that there was a maximum threshold that could not be stretched much more than the current 120 years or so, and others believing that there was no limit.”

Nir Barzilai, director of the Institute for Ageing Research at the Albert Einstein College of Medicine, is one of the pessimists. “Based on the biology that we know today, somewhere between 100 and 120 there is a roof in play and I challenge if we can get beyond it.” Venter is one of the optimists. “I don’t see any absolute biological limit on human age,” he says, arguing that cellular immortality – in effect running the clock backwards – should be possible. “We can expect biological processes to eventually get rid of years. Whether this will happen this century or not, I can’t tell you”. Such ideas are just speculation for now. But John Troyer, who studies death and technology at the Centre for Death and Society at the University of Bath, says we need to take them seriously. “You want to think about it now before you are in the middle of an enormous mess.”

What happens if we all live to 100, 110, 120 or beyond? Society will start to look very different. “People working and living longer might make it more difficult for a new generation to get into the labour force or find houses,” says Troyer. And, with ageing delayed, how many children are we talking about as being a normal family? “There is a very strong likelihood there would be an impact on things like family structures.” A 2003 American president’s Council on Bioethics reportlooked at some of these issues suggesting there may be repercussions for individual psychology, too.

One of the “virtues of mortality” it pointed out is that it may instill a desire to make each day count. Would knowing you had longer to live decrease your willingness to make the most of life? De Grey acknowledges potential practical challenges but cheerily says society would adapt, for example by having fewer children, and with people able to decide when to end their lives. There are pressing questions too about who would benefit if and when these interventions become available. Will it just be the super rich or will market incentives – who wouldn’t want it? – push costs down and make treatment affordable?

Will Britain’s NHS or health insurers in other countries pay for drugs that extend peoples lives? The medical cost of caring for people in their twilight years would fall if they remained healthier longer, but delayed ageing will also mean more people draw pensions and state benefits. But advocates say these challenges don’t negate the moral imperative. If the period of healthy life can be extended, then doing so is the humanitarian thing to do, says Nick Bostrom, director of Oxford’s Future of Humanity Institute. “There seems to be no moral argument not to,” he says. Troyer agrees but asks whether living longer does necessarily mean you will be healthier – what does “healthy” or “healthier” mean in this context? he asks.

The far future aside, there are challenges for the new tech entrants. Calico may get too side-tracked by basic research, worries de Grey; Venter’s approach may take years to bear fruit because of issues about data gathering, thinks Barzilai; while the money on offer from the Palo Alto prize is a paltry sum for the demanded outcome and potential societal impact, says Johnson. Still, history reminds us, even if they don’t succeed, we may still benefit.

Aviator Charles Lindbergh tried to cheat death by devising ways to replace human organs with machines. He didn’t succeed, but one of his contraptions did develop into the heart-lung machine so crucial for open-heart surgery. In the quest to defeat ageing, even the fruits of failure may be bountiful.

Tech billionaires who want to make death an elective

Why might tech zillionaires choose to fund life extension research? Three reasons reckons Patrick McCray, a historian of modern technology at the University of California, Santa Barbara. First, if you had that much money wouldn’t you want to live longer to enjoy it? Then there is money to be made in them there hills. But last, and what he thinks is the heart of the matter, is ideology. If your business and social world is oriented around the premise of “disruptive technologies”, what could be more disruptive than slowing down or “defeating” ageing? “Coupled to this is the idea that if you have made your billions in an industrial sector that is based on precise careful control of 0s and 1s, why not imagine you could extend this to the control of atoms and molecules?,” he says.

Peter Thiel

Peter Thiel, 47, PayPal co-founder and Facebook’s first investor, recently told Bloomberg Television he took human growth hormone (HGH) as part of his regime to reach 120 (there is no evidence it works and it can even cause harm). He also follows a Paleo diet, doesn’t eat sugar, drinks red wine and runs regularly. He has given more than $6m to Aubrey de Grey’s Sens Foundation, dedicated to extending the human lifespan. In a recent interview he identified three main ways to approach death. “You can accept it, you can deny it or you can fight it. I think our society is dominated by people who are into denial or acceptance, and I prefer to fight it.”

Sergey Brin

Google co-founder Sergey Brin, 41, is known for his love of special projects likeGoogle Glass and CEO Larry Page has credited him for helping bring its new biotech company Calico to fruition. “We’re tackling ageing, one of life’s greatest mysteries,” says the website of the research and development company launched in 2013 and which in September 2014 joined with biopharmaceutical firm AbbVie to pour up to $1.5bn into a research facility focused on fighting age-related diseases. An extra reason for Brin’s interest may be that he discovered in 2008 he carries a genetic mutation that gives him a greater likelihood of developing Parkinson’s disease. Bryn’s wife is co-founder of personal genomics company 23andMe.

Larry Ellison

Larry Ellison, co-founder of computer company Oracle, told his biographer Mark Wilson. “How can a person be there and then just vanish, just not be there?” Ellison, 70, created the the Ellison Medical Foundation in 1997 to support ageing research and has spent more than $335m in the area, though it announced in 2013 that it would no longer fund further grants in the area. Ellison remains tight lipped about why, but there are reports that, with the emergence of Calico, he felt that he’d done his bit.

Craig Venter

“A lot of people spend their last decade of their lives in pain and misery combating disease,” says Craig Venter, San Diego based pioneering biologist and billionaire entrepreneur who raced to sequence the human genome. “I think it is possible to begin to do more about that than we are doing.” Venter, 68, announced his new company, Human Longevity, to promote healthy ageing using advances in genomics and stem cell therapies in March 2014. Would Venter like to beat death? “I am not sure our brains and our psychologies are ready for immortality,” he says. “[But] if I can count on living to 100 without major debilitating diseases I would accept that Faustian bargain right now.”

Dmitry Itskov

A digital copy of your brain turned into a low-cost, lifelike avatar, which doesn’t age. That’s the vision of Dmitry Itskov, a thirtysomething Russian multi-millionaire internet mogul who founded an online media company New Media Stars. His 2045 Initiative, so-called for the year he hopes to complete it, aims to “create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality”. Though not from Silicon Valley himself, his ideas draw on those of Ray Kurzweil, a prominent futurist, who is director of engineering at Google. Kurzweil has predicted that scientists will one day find a way to download human consciousness, no longer necessitating the need for our bodies.

http://www.theguardian.com/science/2015/jan/11/-sp-live-forever-extend-life-calico-google-longevity